تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,538,741 |
تعداد دریافت فایل اصل مقاله | 15,242,439 |
شبیهسازی و ضعیت رسوبگذاری رودخانه ابرو سد اکباتان همدان با مدل ریاضی GSTARS 2.1 | ||
هیدروژئومورفولوژی | ||
دوره 9، شماره 31، شهریور 1401، صفحه 50-25 اصل مقاله (1.95 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2021.45616.1585 | ||
نویسنده | ||
علیرضا ایلدرمی* | ||
دانشیار دانشگاه | ||
چکیده | ||
هدف از این پژوهش، شبیهسازی و ضعیت رسوبگذاری رودخانه ابرو سد اکباتان همدان با استفاده از مدل ریاضی GSTARS 2.1 می باشد .بدین ﻣﻨﻈﻮر ﺟﻬﺖ ﮐﺎﻟﯿﺒﺮاﺳﯿﻮن و واسنجی ﺑﺨﺶ ﻫﯿﺪرودﯾﻨﺎﻣﯿﮏ و رسوب ﺟﺮﯾﺎن، از اﻃﻼﻋﺎت ﻫﯿﺪروﻣﺘﺮی اﯾﺴﺘﮕﺎه اﻧﺪازه ﮔﯿﺮی ابرو ، دادهﻫﺎی تغییرات رقوم سطح آب درسال 1384، داده های هندسی مقطع عرضی برداشت شده در سال های 1384و 1397 و معادلات انتقال رسوب در ﯾـﮏ دوره آﻣـﺎری13 ساله استفاده شد. بررسیها نشان میدهد که مقطع عرضی رودخانه از سال 84 تا 97 از حالتV شکل به U شکل در حال تغییر است. فرسایش بیشتر در ساحل چپ نسبت به ساحل راست رودخانه ابرو موجب افزایش عدم تقارن و کج شدگی بستر رودخانه شده است. افزایش ضریب مانینگ و ته نشینی رسوبات در قسمت های پر پیچ و خم مسیر رودخانه نیز منجر به توسعه پیچ و خم هاو مئاندری شدن رودخانه ابرو شده است. بررسی میزان رسوبگذاری در طول 13سال (84تا97) نشان میدهد که تراز مقطع عرضی رودخانه حدود 6/24سانتیمتر و با استفاده از روابط رسوبی توفالتی و یانگ به ترتیب 8/22 و2/20 سانتیمتر تغییر یافته که بیانگر تطابق خوب مدل در ارزیابی و شبیهسازی تغییر مقطع عرضی در اثر فرسایش و رسوبگذاری میباشد. به دلیل اینکه مقادیر شیب و سرعت در میانه محدوده مورد بررسی کمتر از ابتدا و بیشتر از انتها است، لذا میزان رسوبگذاری در میانه نسبت به ابتدا بیشتر و نسبت به پایین دست منطقه کمتر میباشد. پیشنهاد میشود از روشهای FLUVIAL 12,HEC-RAS استفاده تا کاربردیترین روش انتخاب و بکار گرفته شود. | ||
کلیدواژهها | ||
شبیهسازی عددی؛ معادله یانگ؛ ضریب مانینگ؛ سداکباتان | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Asadi, M., Fathzadeh, A., & Taghizadeh Mehrjerdi, R. (2017). Investigation of the effect of time scale (daily, monthly and annual) on the prediction of suspended sediment load, Journal of Hydrogeomorphology, 3(10), 121-143. Azizi, S., Ildoromi, A., Nouri, H. (2020), The effect of cross-sectional change on the overflow and transfer capacity of the Hamadan Abshineh River, Quantitative Geomorphological Research, 8(2), 209-189. Bayazidi, M., & Karami, N. (2017). Prediction of sedimentation trend in Qarasu River using GSTARS 3 model, Journal of Environment and Water Engineering, 3(1), 66-80. Batni, A., Golmaei, S.H., & Zia Tabar Ahmadi, M. (2015). Investigation of sediment transfer and river bed changes using mathematical model.3 GSTARS (Case study: Gavroud River), Journal of Soil and Water Conservation Research, 22(1), 191-210. Dehghanzadeh, B., & Zahiri, A. (2016). Estimation of river sediment transport capacity using quasi-two-dimensional mathematical model, Journal of Soil and Water Conservation Research, 22(2), 47-53. Farajzadeh, M., Heidary, A.A., Mollashahi, M., & Rajabi Rostamabadi, N. (2017). Analysis and comparisonof suspended sediment in the Caspia and Central Iran watersheds, Journal of Hydrogeomorphology, 3(11), 59-82. Hu, B., Wang, T.H., Yang, Z., & Sun, X. (.2011). Temporal and Spatial variations of sediment rating curves in the Changjiang yangtze River) basin and their implications. Quaternary International, 230, 34-43. Ildoromi, A., & Sheykhipour, A. (2016). Investigation of river morphological changes and its role in erosion and sedimentation using HEC-RAS model (Case study: Khorramabad-Doab-e-Visan river), Quantitative Geomorphological Research, 5(3), 146- 163. Iqbal, M., Ghumman, A.R., Haider, S., Hashmi, H.N., & Khan, M.A. (2019). Application of Godunov type 2D model for simulating sediment flushing in a reservoir, Arabian Journal for Science and Engineering, 44(5), 4289-4307. Karami, F., & Bayati Khatibi, M. (2019). Modeling soil erosion and prioritizing sediment production in Sattarkhan Ahar dam basin using MUSLE and SWAT models, Journal of Hydrogeomorphology, 18, (23), 119-141. Keane, T.D., & Sass, C.K. (2017). Channel Evolution Models as Predictors of Sediment Yield, Journal of the American Water Resources Association, 53(6), 1513-1529. Klavon, K. Fox, G., Guertault, L., Langendoen, E., Enlow, H., Miller, R., & Khanal, A. (2017). Evaluating a process‐based model for use in streambank stabilization: insights on the Bank Stability and Toe Erosion Model (BSTEM), Earth Surface Processes and Landforms, 42(1), 191-213. Lai, Y. G., & Wu, K. (2019). A Three-Dimensional Flow and Sediment Transport Model for Free-Surface Open Channel Flows on Unstructured Flexible Meshes. Fluids, 4(1), 18-27. Molinas, A., & Yang, C.T. (1986). Computer Program User’s Manual for GSTARS (Generalized Stream Tube model for Alluvial River Simulation), U. S. Bureau of Reclamation, Denver, Colorado. Noorani, V., & Mohsenzadeh, S. (2017). Estimation of Monthly Sediment Load of Aji Chai Basin Stations Using MPSIAC Model and Waterfall Microscale, Artery, Journal of Hydrogeomorphology, 3(11), 83-103. Ouda, M. (2019). Multiphase Modelling of Sediment Transport and Bed Erosion for the Study of Coastal Morphodynamics, (KU Leuven, Technology Campus Brugge, Belgium). Ribeiro, M. (2011). Influence of tributary widening on confluence morphodynamics. Ph.D. thisesQing. Yuan, Y., W. Xian-Ye, L. Wei-Zhen, & Xie-Kang, W. (2009). Experimental study on characteristics of separation zone in confluence zones in rivers. Journal of Hydrologic Engineering, 14, 166-171. Rodriguez-Belanco, M.L., Taboada-Castro, M.M., Palleiro, L., & Taboada-Castro, M.T. (2010). Temporal changes in suspended sediment transport in an Atlantic catchment, NW Spain. Geomorphology, 123(1-2), 181-188. Sharafi, S., Skond, H., & Kamali, Z. (2020). Study of spatio-temporal changes in the morphology of Silakhor River in Lorestan province, Journal of Quantitative Geomorphological Research, 8(3), 31, 115-131. Yang, C.T. (2008). GSTARS Computer models and sedimentation control in surface water systems, International Conference on Water Resources and Arid Environments, King Saud University. Yang, C.T., & Simões, F.J.M. (2000). User’s manual for GSTARS 2.1, U.S. Bureau of Reclamation technical service center, Denver, Colorado. Yang, C.T. & Simoes, F.J.M. (1998). Simulation and prediction of river morphologic changes using Gstars 2.0. US- China Workshop on Advanced Computational Modeling in Hydroscience & Engineering, September, 19- 21, Oxford, Mississippi, USA. Yang, C.T. (1996). Sediment transport: theory and practice. McGraw-Hill Companies, Inc., New York, NY. Yasi, M., Nasiri, L, & Ahmadi, S. (2018). Simulation and evaluation of rivers with constant flow with two models HEC-RAS and RubarBE, Journal of Soil and Water Knowledge, 27(2), 225-236. Zahiriy, A. R., Qoli Nejad, J., & Dehghani, A. (2018). Calculation of transverse distribution of River sediments using a quasi-two-dimensional mathematical model (Case study: Qarasu River), Journal of Water Resources Engineering, 11(38), 83-93.
| ||
آمار تعداد مشاهده مقاله: 492 تعداد دریافت فایل اصل مقاله: 237 |