تعداد نشریات | 44 |
تعداد شمارهها | 1,302 |
تعداد مقالات | 16,019 |
تعداد مشاهده مقاله | 52,485,337 |
تعداد دریافت فایل اصل مقاله | 15,212,983 |
شناسایی و استخراج لندفرم ها و کاربری های اراضی حوضه آبریزقرنقو با استفاده از تکنیک های شی گرا | ||
هیدروژئومورفولوژی | ||
دوره 9، شماره 31، شهریور 1401، صفحه 23-1 اصل مقاله (2.21 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2021.43061.1559 | ||
نویسندگان | ||
صیاد اصغری سراسکانرود* 1؛ مصطفی امیدی فر2؛ احسان قلعه3 | ||
1دانشیار دانشگاه محقق اردبیلی | ||
2دانشجوی کارشناسی ارشد، رشته سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی | ||
3دانشجوی دکتری رشته ژئومورفولوژی، گروه جغرافیای طبیعی دانشگاه محقق اردبیلی | ||
چکیده | ||
شناخت لندفرمها و نحوه پراکنش آنها از نیازهای اساسی در علم ژئومورفولوژی کاربردی و سایر علوم محیطی است و نقشه لندفرمها نمایانگر اشکال سطح زمین و نیز ماهیت فرآیندهایی است که در زمان حاضر رخ میدهند. هدف از این تحقیق، شناسایی لندفرمها و کاربریهای اراضی حوضه آبریز قرنقو با استفاده از روشهای طبقهبندی شیگرا شامل الگوریتم نزدیکترین همسایه و آستانهگذاری میباشد. بدین منظور از تصاویر ماهواره لندست برای بازه زمانی 1990 (TM) و 2020 (OLI) استفاده شد. برای اعمال طبقهبندی در گام نخست تصحیحات اتمسفری و رادیومتریکی بر روی تصاویر اعمال شد و سپس به منظور شناسایی و استخراج بهتر پدیدهها از الگوریتمهای PCA و MNF استفاده شد. برای انجام طبقهبندی تصاویر ماهوارهای نیز از روشهای طبقهبندی شیگرا شامل روش نزدیکترین همسایه و آستانهگذاری بهره گرفته شد. برای صحت نقشههای تولید شده با استفاده از ضریب کاپا و صحت کلی استفاده گردید. نتایج ارزیابی روشهای مورد استفاده نشان داد که روش نزدیکترین همسایه دارای دقت بیشتری نسبت به روش آستانهگذاری میباشد. همچنین نتایج حاصل از طبقهبندی نشان داد که بیشترین میزان تغییرات کاهشی در خلال سالهای 1990-2020 مربوط به کاربری مرتع متراکم میباشد، چرا که 49/12 درصد کاهش داشته است و بیشترین میزان تغییرات افزایشی مربوط به کاربری زراعت آبی میباشد که 83/10 درصد افزایش داشته است که مهمترین علت این افزایش مساحت را میتوان به احداث سد سهند در طول زمان ارتباط داد. | ||
کلیدواژهها | ||
ژئومورفولوژی؛ طبقه بندی شی گرا؛ لندفرم؛ حوضه آبریز قرنقو؛ شمال غرب ایران | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Alavi Panah, S.K., Ehsani, A., & Omidi, P. (2004). Investigation of desertification and changes in Damghan playa lands using multi-time and multi-spectral satellite data. Desert Quarterly, 9(1), 143-150. Ara, H. (2013). Landforms and their classification in geomorphology science (Case study: Jajroud catchment northeast of Tehran). Geographical Information "Sepehr", 22, 17-22. Avarideh, H.R., Safari, A.R., Homayouni, S., & Khazaei, S. (2015). Nearshore bathymetry using hyperspectral remote sensing. Geospatial Engineering Journal, 6(1), 1-10. Bahrami, H., Nohegar, A., & Mahmoudi, V. (1397). Automatic classification of watershed landforms using GIS (Case study: Borujen watershed in Chaharmahal and Bakhtiari province). Quantitative Geomorphological Research, 2(3), 17-30. Chen, M., Su, W., Li, L., Chao, Z., Yue, A., & Li, H. (2009). Compare of Pixel-based and Object-oriented Knowledge–based Classification Methods Using Spot5 Imagery. Wseas Transction on Information Science and Applications, 477-489. Dehn, M., Gartner, H., & Dikau, R. (2001). Principles of Modeling of Landform Structure. Computers and Geosciences, 27, 1005-1010. Faizizadeh, B., AbdullahAbadi, S., & Valizadeh, Kh. (2017). Modeling Uncertainty from SRTM and ASTER elevation data and its effect on landform classification in Garmachay catchment. Journal of Geographical Information "Sepehr", 26(103), 29-41. Faizizadeh, B., Azizi, H., & Valizadeh, Kh. (2007). Land use Mining of Malekan City using Landsat 7 ETM+ Satellite Imagery. Spatial Puissant, 26, 235–245. Gercked, D. (2010). Object-based Classification of Landforms Based on Context their Local Geometry and Geomorphometric, Thesis (Ph.D.), Middle East Technical University, Ankara, Turkey. Hojjati, M., & Mokarram, M. (2018). Using the sub-pixel model of attraction to classify landforms. Quantitative Geomorphology Research, 4(4), 40-55. Huan, Y., Zhengwei, H., & Xin, P. (2010). Wetlands shrink simulation using Cellular Automata: a case study in Sanijiang Plains, China. Procedia Environmental Sciences, 2, 225-233. Huang, L., & Ni, L. (2008). Object-Oriented Classification of High Resolution Satellite Image for Better Accuracy, Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, P. R. China, 25-27. Jensen, J.R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd Edition, Upper Saddle River: Prentice-Hall, 526. Karimi, K., Zehtabian, Gh., Faramarzi, M., & Khosravi, H. (2018). Investigating the effect of Karkheh dam irrigation networks on land use changes using satellite images (Case study: Dasht-e Abbas semi-arid region). Journal of Geographical Information "Sepehr", 27(106), 129-140. Madadi, A., & Mozaffari, H. (2018). Comparison and evaluation of supervised classification methods in extracting and detecting changes in landforms geomorphology of Sajasrood catchment. Quantitative Geomorphological Research, 7(3), 71-90. Mehrabi Nejad, A. (2019). Geomorphologic Landform-Stratigraphy recognition of Hormoz Salt Domes Based on Interpretation of Satellite Images ETM+. Mokarram, M., & Negahban, S. (2014). Classification of landforms using topographic position index (TPI) (Case study: southern region of Darab city). Journal of Geographical Information "Sepehr", 23(92), 57-65. Mokarram, M., & Negahban, S. (2015). Landform classification using self-organizing neural networks (Self-organization map)(Case Study: Basin Gavkhuni). Quaternary Journal of Iran, 1(3), 225-238. Myint, S.W., Gober, P., Brazel, A., GrossmanClarke, S., & Weng, Q. (2011). Per-pixel vs. object based classification of urban land cover extraction using high spatial resolution imagery. Remote sensing of environment, 115(5), 1145-1161. Nair, C., Ammini, J., & Padmakumari Gopinathan, V. (2018). GIS Based landform classification using digital elevation model (case study from two river basins of Southern Western Ghats, Kerala, India). Modeling Earth System and Environment, 304-313. Peterson, L.k., Bergen, K.M., Brown, D.G., Vashcchuk, L., & Blam, Y. (2009). Forested land cover patterns and trends over changing forest management eras in the Siberian Baikal region. Forest Ecology and Management, 257, 911-922. Qi, W., Yang, X., Wang, Z., Li, Z., Yang, F., & Zheng, Z. (2018). Fast Landform Position Classification to Improve the Accuracy of Remote Sensing Land Cover Mapping. Earth Sciences, 7(1), 23-39. Rajabi, M. (2008). Analysis of landforms based on aerial photographs and topographic maps (case study: Azerbaijan). Geographical Information "Sepehr", 17(67), 62-68. Rayati Shavazi, M., Karam, A., Ghaffarian Malmiri, H.R., & Adel, S. (2018). Comparison of the efficiency of some classification algorithms in studying the changes of desert landforms in Yazd-Ardekan plain. Quantitative Geomorphological Research, 6(1), 57-73. Saeedzadeh, F., Sahebi, M.R., Ebadi, H., & Sadeghi, V. (2016). Change Detection of Multi temporal Satellite Images by Comparison of Binary Mask and Most Classification Comparison Methods. Journal of Geomatics Science and Technology, 5(3), 111-128. Shayan, S., Mullah Mehr Alizadeh, F., & Jannati, M. (2006). Performance data of remote sensing (RS) in mapping landforms and its role in environmental planning. Journal of Spatial Planning, 9(4), 111-148. Vesanto, J., & Alhoniemi, E. (2000). Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks, 11(3), 586-600. | ||
آمار تعداد مشاهده مقاله: 456 تعداد دریافت فایل اصل مقاله: 368 |