تعداد نشریات | 44 |
تعداد شمارهها | 1,304 |
تعداد مقالات | 15,973 |
تعداد مشاهده مقاله | 52,333,688 |
تعداد دریافت فایل اصل مقاله | 15,098,204 |
جداسازی میکرو و نانو ذرات با استفاده از روش القای بار الکتروسینتیک در یک کانال مستطیلی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 34، دوره 52، شماره 3 - شماره پیاپی 100، آبان 1401، صفحه 309-317 اصل مقاله (562.62 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.51153.3086 | ||
نویسندگان | ||
فریده سلیمیان ریزی1؛ شهرام طالبی* 2؛ مهدی محمدی3 | ||
1دانشجوی دکتری، مهندسی مکانیک، دانشگاه یزد، یزد، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه یزد، یزد، ایران | ||
3دانشیار، مهندسی مکانیک، دانشگاه کلگری، کلگری، کانادا | ||
چکیده | ||
اگزوزومها عامل اصلی سرطان هستند و جدا کردن آنها از خون میتواند در تشخیص بیماری مؤثر باشد. ابعاد اگزوزومها بسیار کوچک است بنابر این جدا کردن آنها کار بسیار حساسی است. در گذشته بیشتر از سانتریفیوژهای دور بالا برای این کار استفاده میشد اما عیب این روش آن بود که سرعت بالای این سانترفیوژها باعث از بین رفتن و تغییر شکل اگزوزوم میشدند، همچنین تجهیزات استفاده شده بسیار گران قیمت بودند. یکی از محبوب ترین روشها که اخیراً برای جدایش ذرات ریز مقیاس استفاده میشود و به نسبت روش ارزانتر و سادهتری محسوب میشود، القای بار الکترو سینتیک است. مقاله حاضر به بررسی جداسازی ذرات با استفاده از جریان مستقیم و روش القای بار الکترو سینتیک پرداخته است و بازه ذرات جدا شده بین µm1 تا nm10 است. زمانی که کانال تحت تاثیر میدان الکتریکی قرار میگیرد، گردابههایی در اطراف آن تشکیل میشود که از این گردابهها برای به دام انداختن ذرات و جدا کردن آنها از سیال استفاده شده است. نتایج نشان دادهاند که ذرات با بازده 100% از سیال جدا شدهاند، همچنین در این مطالعه مدلی برای جدا سازی هم زمان ذرات µm5 و nm100 از یکدیگر با بازده 100% ارائه شده است. مدل ارائه شده در این مطالعه یک کانال مستطیلی است که در داخل آن یک مانع مستطیلی تعبیه شده و در نرم افزار المان محدود Comsol شبیه سازی شده است. | ||
کلیدواژهها | ||
ذرات زیستی؛ القای بار الکتروسینتیک؛ به دام انداختن ذرات؛ جریان مستقیم؛ الکترواسموسیس؛ میکرو و نانو ذرات | ||
مراجع | ||
[1]Liu, S.-J., S.-H. Hwang, and H.-H. Wei, Nonuniform Electro-osmotic Flow on Charged Strips and Its Use in Particle Trapping. Langmuir, Vol.24 No.1, pp. 13776-13789, 2008. [2] Liu, S.-J., et al., Dynamic particle trapping, release, and sorting by microvortices on a substrate. Physical Review E, Vol.82 No.2, pp. 026308, 2010. [3] Green, Y. and G. Yossifon, Dynamical trapping of colloids at the stagnation points of electro-osmotic vortices of the second kind. Physical Review E, Vol.87 No.3, pp. 033005, 2013. [4] Skriner, K., et al., Association of citrullinated proteins with synovial exosomes. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, Vol.54 No.12, pp. 3809-3814, 2006. [5] Gonzalez-Begne, M., et al., Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). Journal of proteome research, Vol.8 No.3, pp. 1304-1314, 2009. [6] Gonzales, P.A., et al., Large-scale proteomics and phosphoproteomics of urinary exosomes. Journal of the American Society of Nephrology, 2009. 20(2): p. 363-379. [7] Poliakov, A., et al., Structural heterogeneity and protein composition of exosome‐like vesicles (prostasomes) in human semen. The Prostate, Vol.69 No.2, pp. 159-167, 2009. [8] Admyre, C., et al., Exosomes with immune modulatory features are present in human breast milk. The Journal of immunology, Vol.179 No.3, pp. 1969-1978, 2007. [9] Stone, H.A. and S. Kim, Microfluidics: basic issues, applications, and challenges. AIChE Journal, Vol.47 No.6, pp. 1250-1254, 2001. [10] Kua, C., et al., Review of bio-particle manipulation using dielectrophoresis. 2005. [11] Bazant, M.Z. and T.M. Squires, Induced-charge electrokinetic phenomena: theory and microfluidic applications. Physical Review Letters, Vol.92 No.6, pp. 066101, 2004. [12] Squires, T.M. and M.Z. Bazant, Induced-charge electro-osmosis. Journal of Fluid Mechanics, Vol.509, pp. 217-252, 2004. [13] Squires, T.M. and M.Z. Bazant, Breaking symmetries in induced-charge electro-osmosis and electrophoresis. Journal of Fluid Mechanics, Vol.56 No.0, pp. 65-101, 2006. [14] Squires, T.M. and S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale. Reviews of modern physics, Vol.77 No.3, pp. 997, 2005. [15] Patankar, N.A. and H.H. Hu, Numerical simulation of electroosmotic flow. Analytical Chemistry, Vol.70 No.9, pp. 1870-1881, 1998. [16] Yang, R.-J., L.-M. Fu, and Y.-C. Lin, Electroosmotic flow in microchannels. Journal of colloid and interface science, Vol.239 No.1, pp. 98-105, 2001. [171 Xuan, X., et al., Electroosmotic flow with Joule heating effects. Lab on a Chip, Vol.4 No.3, pp. 230-236, 2004. [18] Ashkin, A., J.M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams. Nature, Vol.330 No.6150, pp. 769, 1987. [19] Pethig, R., Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells. Critical reviews in biotechnology, Vol.16 No.4, pp. 331-348, 1996. [20] Nilsson, J., et al., Review of cell and particle trapping in microfluidic systems. Analytica chimica acta, Vol.649 No.2, pp. 141-157, 2009. [21] Ashkin, A. and J.M. Dziedzic, Optical trapping and manipulation of viruses and bacteria. Science, Vol.235 No.4795, pp. 1517-1520, 1987. [22] Müller, T., et al., High frequency electric fields for trapping of viruses. Biotechnology techniques, Vol.10 No.4, pp. 221-226, 1996. [23] Hayward, R., D. Saville, and I.A. Aksay, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature, Vol.404 No.6773, pp.56, 2000. [24] Li, F., D.P. Josephson, and A. Stein, Colloidal assembly: the road from particles to colloidal molecules and crystals. Angewandte Chemie International Edition, Vol.50 No.2, pp. 360-388, 2011. [25] Reuss, F., Memoires de la societe imperiale de naturalistes de Moscou. 1809. [26] Smoluchowski, M., Krak. 1903, Anz. [27] Wu, Z. and D. Li, Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluidics and Nanofluidics, Vol.5 No.1, pp. 65-76, 2008. [28] Wu, Z. and D. Li, Micromixing using induced-charge electrokinetic flow. Electrochimica Acta, Vol.53 No.19, pp. 5827-5835, 2008. [29] Harnett, C.K., et al., Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab on a Chip, Vol.8 No.4, pp. 565-572, 2008. [30] Wang, C., et al., A novel microfluidic valve controlledby induced charge electro-osmotic flow. Journal of Micromechanics and Microengineering, Vol.26 No.7, pp. 075002, 2016. [31] Sharp, K., S. Yazdi, and S. Davison, Localized flow control in microchannels using induced-charge electroosmosis near conductive obstacles. Microfluidics and Nanofluidics, Vol.10 No.6, pp. 1257-1267, 2011. [32] Paustian, J.S., et al., Induced charge electroosmosis micropumps using arrays of janus micropillars. Lab on a Chip, Vol.14 No.17, pp.3300-3312, 2014. [33] Gangwal, S., et al., Induced-charge electrophoresis of metallodielectric particles. Physical review letters, Vol.100 No.5, pp. 058302, 2008. [34] Daghighi, Y., et al., Experimental validation of induced-charge electrokinetic motion of electrically conducting particles. Electrochimica Acta, Vol.87 No.0, pp. 270-276, 2013. [35] Ren, Y., et al., Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on a Chip, Vol.16 No.15, pp. 2803-2812, 2016. [36] Ren, Y., et al., Induced-charge electroosmotic trapping of particles. Lab on a chip, Vol.15 No.10, pp.2181-2191, 2015. [37] Wu, Y., et al., Large-scale single particle and cell trapping based on rotating electric field induced-charge electroosmosis. Analytical chemistry, Vol.88 No.23, pp. 11791-11798, 2016. [38] Ding, H., et al., Influence of induced-charge electrokinetic phenomena on the dielectrophoretic assembly of gold nanoparticles in a conductive-island-based microelectrode system. Langmuir, Vol.29 No.39, pp. 12093-12103, 2013. [39] Ren, Y., et al., Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis. Biomicrofluidics, Vol.10 No.5, pp.054103, 2016. [40] Liu, W., et al., On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics. Biomicrofluidics, Vol. 10 No.3, pp.034105, 2016. [41] Tao, Y., et al., Enhanced particle trapping performance of induced charge electroosmosis. Electrophoresis, Vol.37 No.10, pp. 1326-1336, 2016. [42] Zhao, C. and C. Yang, Continuous-flow trapping and localized enrichment of micro-and nano-particles using induced-charge electrokinetics. Soft matter, Vol.14 No.6, pp. 1056-1066, 2018. [43] Chen, X., et al., A simplified microfluidic device for particle separation with two consecutive steps: Induced charge electro-osmotic prefocusing and dielectrophoretic separation. Analytical chemistry, Vol.89 No.17, pp. 9583-9592, 2017. [44] Kang, Y. and D. Li, Electrokinetic motion of particles and cells in microchannels. Microfluidics and nanofluidics, Vol.6 No.4, pp. 431-460, 2009. [45] Arefin, M.S. and T.L. Porter, An ac electroosmosis device for the detection of bioparticles with piezoresistive microcantilever sensors. Journal of Applied Physics, Vol.111 No.5, pp.054919, 2012. [46] Wong, P.K., et al., Electrokinetic bioprocessor for concentrating cells and molecules. Analytical chemistry, Vol.76 No.23, pp. 6908-6914, 2004. [47] Hunter, R., Zeta Potential in Colloid Science: Principles and Applications, Academic Press, New York, 1981. [48] Daghighi, Y., Induced-Charge Electrokinetic Motion of a Heterogeneous Particle and Its Corresponding Applications. 2013. [49] Rizi, F.S., S. Talebi, and M. Mohammadi, Novel induced charge electrokinetic based microfluidic design for trapping of micro and nanoparticles: Numerical simulation approach. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2021. [50] Nimesh, S., R. Chandra, and N. Gupta, Advances in nanomedicine for the delivery of therapeutic nucleic acids. Woodhead Publishing.2017. [51] Ge, Z., C. Yang, and G. Tang, Concentration enhancement of sample solutes in a sudden expansion microchannel with Joule heating. International Journal of Heat and Mass Transfer, Vol.53 No.13, pp. 2722-2731, 2010. [52] Marshall, J.S. and S. Li, Adhesive particle flow. Cambridge University Press, 2014. [53] Karadimos, A. and R. Ocone, The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. Powder technology, Vol.137 No.3, pp. 109-119, 2003. [54] Dutta, P. and A. Beskok, Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects. Analytical chemistry, Vol.73 No.9, pp. 1979-1986, 2001. [55] Zarkowsky, H.S., Heat‐induced erythrocyte fragmentation in neonatal elliptocytosis. British journal of haematology, Vol.41 No.4, pp. 515-518, 1979. [56] Gao, J., X.-F. Yin, and Z.-L. Fang, Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab on a Chip, Vol. 4 No.1, pp. 47-52, 2004. | ||
آمار تعداد مشاهده مقاله: 167 تعداد دریافت فایل اصل مقاله: 133 |