تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,853 |
تعداد دریافت فایل اصل مقاله | 15,213,900 |
بررسی تأثیر متغیرهای فرآوری و میزان فاز تقویتکننده بر ریزساختار و سختی نانوکامپوزیت Al7075-CNT تهیهشده به روش فرآوری پودری نیمهجامد | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 24، دوره 52، شماره 3 - شماره پیاپی 100، آبان 1401، صفحه 217-226 اصل مقاله (2.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.49920.3046 | ||
نویسندگان | ||
وحید پویافر* 1؛ مسعود خوش خبر قراملکی2؛ رامین مشک آبادی3 | ||
1استادیار، گروه مهندسی ساخت و تولید، دانشگاه تبریز، تبریز، ایران | ||
2کارشناس ارشد، گروه مهندسی ساخت و تولید، دانشگاه تبریز، تبریز، ایران | ||
3استادیار، دانشکده فناوریهای نوین، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
در این تحقیق، از روش فرآوری پودری نیمهجامد برای ساخت نانوکامپوزیت Al7075-CNT استفاده شد. تأثیر متغیرهای فرآیند شامل مدت زمان نگهداری تحتفشار، دمای نیمهجامد و میزان فاز تقویتکننده CNT بر ریزساختار و سختی نمونهها بررسی شد. نتایج نشان داد که سختی نانوکامپوزیت 1%-CNT از آلیاژ پایه بیشتر است اما سختی نمونه 2%-CNT بین آلیاژ پایه و آلیاژ 1%-CNT قرار گرفت. مدت زمان اعمال فشار و دمای نیمهجامد تأثیر محسوسی بر سختی نمونهها نگذاشت. پرسکاری در دمای 620 درجه سلسیوس بهمدت 10 دقیقه بهعنوان متغیرهای مناسب انتخاب گردیدند. ریزساختار نمونهها نشان داد که در آلیاژ 1%-CNT، فاز تقویتکننده در زمینه آلومینیومی کاملاً نفوذ کرده و برخلاف نمونه 2%-CNT تجمعی از نانوذرات CNT در سطح نمونه وجود ندارد. بررسی کمی نتایج نشان داد که درصد مناسب از CNT دارای بیشترین تأثیر بر مقدار سختی است. افزایش دما از 600 به 620 درجه سلسیوس به میزان 10 درصد و افزایش مدت زمان اعمال فشار از 5 به 15 دقیقه نیز به میزان ناچیز دو درصد سبب افزایش سختی نمونههای 1%-CNT نسبت به نمونههای آلیاژ پایه شده است. | ||
کلیدواژهها | ||
فرآوری نیمهجامد پودری؛ نانوکامپوزیت Al7075-CNT؛ نانولوله کربنی؛ فاز تقویت کننده؛ سختی؛ ریزساختار | ||
مراجع | ||
[1] Min G., Lee J.-M., Kang S.-B., and Kim H.-W., Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process. Materials Letters, Vol. 60, No. 27, pp. 3255-3259, 2006. [2] Rezaei M. R., Toroghinejad M. R., and Ashrafizadeh F., Production of nano-grained structure in 6061 aluminum alloy strip by accumulative roll bonding. Materials Science and Engineering: A, Vol. 529, No. pp. 442-446, 2011. [3] Rezayat M., Akbarzadeh A., and Owhadi A., Production of high strength Al–Al2O3 composite by accumulative roll bonding. Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 2, pp. 261-267, 2012. [4] Pang Y., Lin P., Sun Q., Zhang Z., and Liu D., Experimental and numerical analyses of 45 steel during three dimensional severe plastic deformation (3D-SPD). Archives of Civil and Mechanical Engineering, Vol. 20, No. 4, pp. 1-11, 2020. [5] Roy S., Nataraj B., Suwas S., Kumar S., and Chattopadhyay K., Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties. Materials & Design (1980-2015), Vol. 36, No. pp. 529-539, 2012. [6] Ji S., Fan Z., and Bevis M., Semi-solid processing of engineering alloys by a twin-screw rheomoulding process. Materials Science and Engineering: A, Vol. 299, No. 1-2, pp. 210-217, 2001. [7] Kirkwood D. H., Suéry M., Kapranos P., Atkinson H. V., and Young K. P., Semi-solid processing of alloys. Springer, 2010. [8] Guo M. T. and Tsao C.-Y., Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method. Composites science and technology, Vol. 60, No. 1, pp. 65-74, 2000. [9] Yasue K., Yu G., Wen C., and Yamada Y., Elemental blended powders semisolid forming of Ti-Al based alloys. Journal of materials science, Vol. 35, No. 23, pp. 5927-5932, 2000. [10] Young R. and Clyne T., A powder-based approach to semisolid processing of metals for fabrication of die-castings and composites. Journal of materials science, Vol. 21, No. 3, pp. 1057-1069, 1986. [11] Speth M., Liewald M., Riedmüller K. R., Schomer L., Manufacturing of Hybrid Al-Cu-Heatsinks by Combining Powder Pressing with Thixoforming. Solid State Phenomena, Vol. 327, pp. 231-237, 2022. [12] Wu Y. and Kim G.-Y., Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. Journal of Materials Processing Technology, Vol. 211, No. 8, pp. 1341-1347, 2011. [13] Chen C., Guo L., Luo J., Hao J., Guo Z., and Volinsky A. A., Aluminum powder size and microstructure effects on properties of boron nitride reinforced aluminum matrix composites fabricated by semi-solid powder metallurgy. Materials Science and Engineering: A, Vol. 646, No. pp. 306-314, 2015. [14] Chen L., Qi Y., Fei Y., Liu Y., and Du Z., GNP-Reinforced Al2024 Composite Fabricated through Powder Semi-Solid Processing. Materials Transactions, Vol. 61, No. 7, pp. 1239-1246, 2020. [15] Ferreira L., Robert M., and Bayraktar E. Effect of operational parameters in the semi-solid processing of Al/SiC composites from machining chips. in ECCM16—16th European Conference on Composite Materials, Seville, Spain. 2014. [16] Aranke O., Gandhi C., Dixit N., and Kuppan P., Influence of multiwall carbon nanotubes (MWCNT) on wear and coefficient of friction of aluminium (Al 7075) metal matrix composite. Materials Today: Proceedings, Vol. 5, No. 2, pp. 7748-7757, 2018. [17] Luo X., Yang S., Li M., Tang Z., Wang S., Huang B., The Properties Evolution of Medical Mg–Zn Alloys Prepared by Semi-solid Powder Moulding. Transactions of the Indian Institute of Metals, Vol. 74, No. 12, pp.3063-3073, 2021. [18] Fekri Dolatabad P., Pouyafar V., and Meshkabadi R., Fabrication of Al7075-MWCNT Composite Powder by Recycling Aluminum Alloy Chips Via High Energy Milling and Alloying. Journal of Advanced Materials and Processing, Vol. 9, No. 3, pp. 55-66, 2021. ]19[آقاجانی س.، بررسی تجربی تأثیر درصد بارگذاری بالای تقویتکننده (>40%) بر خواص فیزیکی و مکانیکی کامپوزیت Al7075-Al2O3 ساخته شده به روش شکلدهی نیمهجامد پودری. پایاننامه کارشناسیارشد، دانشگاه تبریز، 1396. [20] Huang H.-J., Chen T.-J., Ying M., and Yuan H., Microstructural evolution during solution treatment of thixoformed AM60B Mg alloy. Transactions of Nonferrous Metals Society of China, Vol. 21, No. 4, pp. 745-753, 2011. [21] Chen T., Lü W., Ma Y., Huang H., and Hao Y., Semisolid microstructure of AM60B magnesium alloy refined by SiC particles. International Journal of Materials Research, Vol. 102, No. 12, pp. 1459-1467, 2011. [22] ASTM E384, Standard test method Microindentation Hardness of Materials, 2005. Vol. No. pp. [23] Simões S., Viana F., Reis M. A., and Vieira M. F., Influence of dispersion/mixture time on mechanical properties of Al–CNTs nanocomposites. Composite Structures, Vol. 126, No. pp. 114-122, 2015. [24] Salas W., Alba-Baena N., and Murr L., Explosive Shock-Wave consolidation of aluminum Powder/Carbon nanotube aggregate mixtures: optical and electron metallography. Metallurgical and Materials Transactions A, Vol. 38, No. 12, pp. 2928-2935, 2007. [25] Soni S. K., Thomas B., and Kar V. R., A comprehensive review on CNTs and CNT-reinforced composites: syntheses, characteristics and applications. Materials Today Communications, Vol. No. pp. 101546, 2020. [26] Wang H., Zhang Z.-H., Hu Z.-Y., Song Q., Yin S.-P., Kang Z., and Li S.-L., Improvement of interfacial interaction and mechanical properties in copper matrix composites reinforced with copper coated carbon nanotubes. Materials Science and Engineering: A, Vol. 715, No. pp. 163-173, 2018. | ||
آمار تعداد مشاهده مقاله: 129 تعداد دریافت فایل اصل مقاله: 147 |