- Liever, P. and Habchi, S., Separation analysis of launch vehicle crew escape systems, 22nd Applied Aerodynamics Conference and Exhibit, 2004.
- Davies, H., Reaction Motors (Thiokol) Family of Packaged Liquid Rocket Engines. Journal of Spacecraft and Rockets, Vol 44 No 6, pp. 1271-1284, 2007.
- Zhang, J.H., Dynamic coupling analysis of rocket propelled sled using multibody-finite element method, Journal of Computer Modelling New Technologies, Vol 18, pp. 25-30, 2014.
- Szmerekovsky, A.G. and Palazotto, A.N., Structural dynamic considerations for a hydrocode analysis of hypervelocity test sled impacts, AIAA journal, Vol 44 No6, pp.1350-1359, 2006.
- Xiao, J. X., Zhang, W. W., Wang, X. H., Zhang, L. R., Geng, Q. and Guo, B., Verification of recovery strength of rocket sled double track sled, Artificial Intelligence and Computer Engineering, 2021. https://doi.org/10.1117/12.2623159.
- Xue, X., Wen, C. Y., Review of unsteady aerodynamics of supersonic parachutes, Progress in Aerospace Sciences, , Vol 125. pp. 77-80, 2021. https://doi.org/10.1016/j.paerosci.2021.100728.
- Meacham M.B., Kennett A., Townsend D.J., Marti B., Rocket sled propelled testing of a supersonic inflatable aerodynamic decelerator, AIAA Aerodyn. Decelerator System, Vol 122, pp 1-13, 2013.
- Zhi-wei, D.O.U. and Suo-xiu, S.H.E.N.G., The Application Research of Metal Rubber Technology [J]. Aircraft Design, Vol 5. pp. 77-80, 2010.
- Tang R.Y., Finite element structural analysis of a machine gun based on ANSYS, Nanjing Univ. Sci. Technology. 2007.
- Gao, N.J. Kessissoglou, Dynamic Response Analysis of Stochastic Truss Structures under Non-stationary Random Excitation using the Random Factor Method, Comput. Methods Appl. Mech. Engrgy, Vol 196 pp. 2765–2773, 2007.
- Rodney, D., Gadot, B., Martinez, O.R., Du Roscoat, S.R. and Orgéas, L., Reversible dilatancy in entangled single-wire materials, Nature materials, Vol 15, No.1, pp.72-77, 2016.
- Gerasimov S.I., Erofeev V.I., Calculation of flexural-and-torsional vibrations of a rocket track rail, J. Mach. Manuf. Reliab. Vol 45, pp. 211-213,
- Tong D.C., Mechanical simulation of rocket sled test damping system, Nav. Electron. Eng. Vol 15, No.1, pp. 87–89, 2012.
- Deleon A., Baker W.P., Palazotto A.N., Evaluation of a nonlinear melt region produced within a high speed environment, AIAA/ASCE/AHS/ASC Structure Dynamic. Material Conference, 2018.
- Hooser M.D., The Holloman High Speed Test Track Gone Soft Recent Advances In Hypersonic Test Track Vibration Environment, 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2002.
- Minto D.W., Recent increases in hypersonic test capabilities at the holloman high speed test track, 38th Aerospace Sci. Meet. Exhib. Conference,
- Gurol H., Ketchen D., Holland L., Minto D., Hooser M., Bosmajian N., Status of the Holloman high speed maglev test track (HHSMTT), 30th AIAA Aerodynamic Technology Test Conference, 2014.
- . Buentello Hernandez R.GPalazotto, A.N., K.H. Le, 3D finite element modeling of high-speed sliding wear, AIAA/ASCE/AHS/ASC Structure Dynamic. Material Conference, 2013.
- Hooser, Michael, Soft Sled-the Low Vibration Sled Test Capability at the Holloman High Speed Test Track, Aerodynamic Measurement Technology and Ground Testing Conference, 2018.
- Hooser, M., Hooser, C., 103X-A1 Vibration Analysis, HHSTT digital archive, Holloman High Speed Test Track, 2016.
- Hooser, M., Hooser, C., Soft Sled Design Evaluation Report, Holloman High Speed Test Track, 2016.
- Xiao, J., Wei-Wei Z., Qiang X., Wei-Bo G. and Lin-Rui Z., Modal Analysis for Single Track Sled, 18th International Conference on physics, Mathematics, Statistics Modelling and Simulation (pmsms), Chine, 2018.
- محبی م.، رضوانی م و درگزی م.، اثرات وزش باد بر حرکت قطارهای پرسرعت (160 تا 300 کیلومتر بر ساعت) از منظر آیرودینامیک و ارائه راهکارهای اصلاحی. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 1، ص 315-321، 1397.
- Dang, T., Liu, Z., Zhou, X., Sun, Y. and Zhao, P., Dynamic Response of a Hypersonic Rocket Sled Considering Friction and Wear Structural dynamic considerations for a hydrocode analysis of hypervelocity test sled impacts, AIAA journal, , 2022. https://doi.org/10.2514/1.A35267.
- Ogata, Modern control engineering, Prentice hall, 2010.
- رنجبر م.، پور موید ع.، طراحی هندسی و آیرودینامیکی نازل جهت افزودن لوله بلست. مجلۀ مهندسی مکانیک دانشگاه تبریز، 1400.
- Carlson, H.W. and Gapcynski, J.P., An Experimental Investigation at a Mach Number of 2.01 of the Effects of Body Cross-Section Shape on the Aerodynamic Characteristics of Bodies and Wing-Body Combinations, 1955.
- Zhang P., Nagae T., McCormick J., Ikenaga M., Katsuo M., Nakashima M., Friction-based sliding between steel and steel, steel and concrete, and wood and stone, in: Proc. 14th World Conf. Earthq. Eng. Beijing, China, pp. 12–17, 2008.
|