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Abstract
In this paper, a new algorithm based on non-polynomial spline is developed for the solution of higher order
boundary value problems(BVPs). Employment of the method is done by decomposing the higher order BVP into
a system of third order BVPs. Convergence analysis of the developed method is also discussed. The method is
tested on higher order linear as well as non-linear BVPs which shows the accuracy and efficiency of the method
and also compared our results with some existing fourth order methods.

Keywords. Non-polynomial spline, Higher-order, Non-linear, Convergence analysis, Boundary value problems.

2010 Mathematics Subject Classification. 65L10, 65D07.

1. INTRODUCTION

Higher order BVPs arise in diversified fields of sciences, particularly in fluid dynamics, astrophysics, induction
motors, beam theory, astronomy and applied sciences. In recent years, mostly higher-order BVPs are solved due to
their mathematical importance. In [1] author discussed conditions for the existence and uniqueness of the solutions
of BVPs. Several techniques have been developed to obtain the numerical solutions of BVPs of higher-order. For
example, finite difference scheme [6], spline collocation method [12], modified decomposition method [17], and Petrov-
Galerkin Method [7] were developed to solve higher order BVPs. In [3, 10, 11, 18], various splines methods were given
to obtain the solution of differential equations. Here, our aim is to give the solution of BVPs of the form:

28N = Pz, 2@ 23 BN e <t <s (1.1)
with
2r) = i, 20 () = o, 2O (r) = pa, 20 (r) = 2N (r) = p, (1.2)
() = v, 2 W(r) = e, 20 (r) = 3,200 (r) = 2N () = vy, (1.3)
Z(s) = A, z2®(s) = Ay, 2 (s) = A3, 219(s) = /\4 ZBN=2)(5) = Ay. (1.4)
where F is sufficiently smooth function in the interval [r, s], N = 2,3,4, p;, 1, and \; (I = 1,2...,n) are real constants.
We rewrite the equation (1.1)-(1.4) as follows:
400 = =), (1.5)
20 = z3(t), (1.6)
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zg\?)(t) = f(t,zl,zi,z§2),22,z§,zé2)7 ...72N,z§\,,z](\?)), (1.7)
with modified conditions;
21(r) = 1, 21(r) =vi, 21(8) = A1, (1.8)
2(r) = pa, 25(r) = v, 25(s) = g, 1.9)
n(r) = un, 2n(r) =vN, 2h(s) = . (1.10)

The above system involves third order BVPs. For example, cubic spline scheme [2], quartic non-polynomial spline
method [5] and quintic spline methods [8] were used to solve third order BVPs. Here, we solve higher order BVPs.
There are various methods like the collocation method [13], non-polynomial spline method [4, 14, 15] were developed
to determine the numerical solutions of these problems. After implementing the linear problem over the developed
scheme, we get a system which consists of linear equations and in the case of a nonlinear problem, we get a system
of non-linear equations. The linear system is solved by the LU decomposition method and nonlinear system is solved
by the Newton Raphson method. The paper is comprised of five sections. Section 2 gives a derivation of method.
Application of the method for solving ninth order BVPs is discussed in section 3. Convergence analysis of the fourth
order method is discussed in section 4 and in section 5, six numerical examples and their comparison with some existing
fourth order methods are presented.

2. DERIVATION OF SCHEME

Let
ty=r+1h, 1=0,1,..,nand h=(s—r)/(n+1),
and
Si(t) = aysink(t —t;) + bycosk(t —t;) + i (t — t1) + di, (2.1)

be a non-polynomial spline S; is defined on [r,s] of class C?[r, s] which reduces into an ordinary cubic spline in [r,s] as
k — 0 and k£ > 0. To calculate the coefficients a;, b;, ¢; and d;, we define

Si(t) =z, Si(tis1) = 241,
Si(t) = Di, S)(tiv1) = Diga, (2.3)
1 1
S; (tl) = 5(F‘1+F‘1+1)7 [=0,1,...,n. (24)
using (2.2), (2.3), and (2.4) we calculated the coefficients as
a = i Eed
1 2]{53 )
o Al A (Fiy1+ F) (—¢+sing hD,
= + -
n 2k? 7 n
Fi+F
aq = D+ o
dy = z -,

where, ¢ = kh and n = —1 + cos ¢.
Using the continuity conditions, S;™,(t;) = S"(t;),m = 0, 1,2 the following equations are derived as

A\Dj1+AsD; = Asziq+ Asz + As(Fio + F), (2.5)

BiD;_1+ByD; = Bsz_1+ Byz + Bszip1 + Beli—1 + B7Fy + BgFiyq, (2.6)
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where
Alzh(n—l-sin(b)’ Ay = A3:_¢sin¢’ 144:¢sin<;57 A5:h3(2—2cosz¢—<bsin¢)7
n n n 20%n
¢Bs — sin ¢ on —¢ +sing
By =—-hB;, By=h, Bz=cos¢, By=-1—-DBs, Bs=1, Bng, B7:27k:3’ Bs = T o3
Using (2.5) and (2.6), we obtain the following relation in terms of z; and F)
T2+ 021 +wa + prigr = BAP(F_s + Fr) + 0(Foi + R)], 1=2,3,.,n— 1, (2.7)
where,
B — 2cos?
= cos? §, o= 3+ T cos ¢7
n
—2B3 + T +cos? ¢
w = ) p= _B3a
n
—¢Bs + Bssin¢ ~  7(2¢B3 — 3¢ —sin @) + ¢Bs(1 + sin ¢)
Ym0 Vo 26 '

The above recurrence relation gives (n — 2) linear equations in n unknowns z;,l = 1,2,...,n. We need two more
equations. These two equations are obtained for second and fourth order method respectively by using method of
undetermined coefficients given by [2]

h3
320 —4z1+20 = —2hDgy+ EBF@ +4F + FQ} + O(h5)7 =1, (2.8)
h3
—3zp—2 +82p—1 — 52, = —2hDpyi+ E[?)ang +10F,_1 + 31F,] + O(h%), | = n, (2.9)
and
hS
320 — 421+ 22 = —2hDg+ @[SFO +35F) — 4F, + F3] + O(h7), 1 =1, (2.10)
h3
=3z, 2+82,1—952, = —2hD,y1+ @[—SFn,3 + 33F,_2+ 38F,_1 + 157Fn] + O(h7)7 [ =n. (2.11)

Remark: Our method reduces to [2] when

(v, Y) = 1*12(1,5) (2.12)

Truncation error (TE). After expanding equation (2.7) using Taylor series we obtained TE as follows:

h? 8 — .
fy = (T+U+w+p)zl+(—27—U+p)hzl'+(47'+a+p)2'21(2)+(T?)'U—i—p—(Qw—FQw))hSzl(?’)
167 +0+p ~ (4 —327—o0+p 5@/}+1/~1 (5 647 +0+p 77,/1+LZ 6
+<4! +(¢+w)>h4zl >+( . e )+ ot h8z®
—1287 — )
+< 877' ote_ wa)th” YOS, 1=2,3,..n—1. (2.13)

(&)
ENE
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Method of different orders are obtained for various values of 1 and 7,Z~1

The TE for the method of second order when (7, U,w,p,z/),z/;) = (— 1,3,-3,1, ﬁ, 152> is given as

1
—Eh%((f) +o0%), I=1,

1
= fghf’zl“) +O(h%),  1=23,..n-1, (2.14)

L5 5) 6 _
10h 2w + O(Rh®), I=n.

The TE for the method of fourth order when (7, a,w,p,w,zﬂ) = (— 1,3,-3,1,0, %) is given as

29
2520 W)+ 0, i=1,
1
t; = %h7zl(7) + O(hg)7 122,3,...,’!’L—1, (215)
677
—504011%,37) +O(h®), I=n.

3. APPLICATION TO NINTH ORDER BVPs

‘We consider a ninth order BVP of the form

200 = a)2® ) +b(t)2 7 (1) + ()20 (t) + d(£)2) () + p(t) 2™ () + w(t) 2P (2)
+9()z3 () + k()2 (t) + q(t)2(t) + m(t), (3.1)
with
a(r) =p1, 2O(r) =pa, 2O(r) = ps, (3.2)
)y =v1, 2D0)=ve, 2D(r) = s, (3.3)
Z(s) =X, 2W(s) =Xy, 2T (s) =g, (3.4
where p; , v and N, (I = 1,2,3) are constants and a(t), b(t), c(t), d(t), p(t), w(t), g(t), h(t), ¢(t), and m(t) are
continuously differentiable functions defined on [r, s]. We rewrite the above problem as follows:
@) = ), (3.5)
u® ) = o), (3.6)
v () = at)® () + b () + c(t)v(t) + d(t)u® () + p(t)u () + w(t)u(t)
+9(t)2 3 (1) + h(t)2' (t) + q(t)z(t) + m(t), (3.7)
with
2(r) =, Z(r)=wvi, 2(s)=A, (3.8
UT)_:LLQ? u(’l")—l/g, UI(S)—)Q, (
o(r) =ps, V(r)=uvs, v'(s)=2As (3.10)
(=)=
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The following are the higher order approximations to derivatives used in (3.7)

2 =

/
Rl-1 =

"
z) =

Here, we derive the scheme for method of fourth order when (7, 0,w, p) = (—1,3,—3,1), ¢ = 0 and Y= 1/2

_z-1— 2zt 24

241 — Z1-1 . —5z1—1 + 821 — 32141
on 2h ’
=3z 4 — 2 ;a1 —4n + 324
oh B 2h ’
Zi—1 — 221+ Zl+1’ l,_2 e 221 + 2141 — 9k
h2 h?

211 — 221+ 2141

" "o "
2 —hz", zi,= W2 + hz'",
2 2
Zl41 — 211 =, heo, " o Rl T 2z + 21 b m "
— =& —l) F = 3 + 5 (=" = 2).
2h 6 24 h 3

by implementing the BVPs (3.5)-(3.7) on the scheme (2.7), we get the following system

h3
Tz—2 + 02—1 +wz + pzip1 = 7[“171 + uyl,
h3
TU—9 + OU_1 + Wy + pujp1 = E[UH + v,
h3 .
TU—2 + 0V_1 + wu; + pUpy1 = ?[qu + F],
where,
E - F(t7 Zl7ul7vl72l/)ﬂ27/ﬁl/7 22,711;/7 172/)7
Fl*l = F(tazlflyulfhvlfhle717ugflavgflaZl/lfhu;/flavl/lfl)a l:2737"'7n_1
Finally, we get the vector difference equation for the BVPs (3.1)
AU +BU L +CU +DU . = H,
which are as follows:
alin  aliz  aliz Z1—2 bli1  bliz bl Z1-1 clin chz clis 21
ala1  ale  alzs Uiz | + | blar  blaz  blas ui—1 | + | clar claz  clas w |+
alz1 alz2 alss Vi—2 bls1 bl bl33 V-1 cla1  clz2  cl3s v
dlin  dliz  dhis Zi+1 hi1
dlm dlzz dl23 Ul+1 = hlg s l = 2, 3, ey — 1
dl31 dl32 dl33 Vi+1 hl3
where,
CLlll T, allg = 0, CLllg = O,
algl = O7 algz =T, al23 = O7
al31 0, al32 = 0, al33 =T,
3
bliy = o,blio = *?,bll?) =0,
hS
blgl == O, leQ = 0, blgg == 7?,
B _ G1hg S1h%hy _ O2hgi—q 302h%hy—1 _ O3hgipn Ssh?hi4q - S1h3q
31 2 4 2 4 2 4 2
by — Sihd,  61h*p _ Oohdy—y 302h2pi_1 _ Ozhdiyy 63h?priq 7 §1h3wy hj(glh
2 2 4 2 4 2 4 2 23

hih?

24

);

(3.11)
(3.12)
(3.13)

(3.14)

(3.15)

. Therefore

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(&)
ENE
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b33
cli
cloy
cl3y
cl3o

0133

dlyy
dla

dlz1

dlzz

3
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Now for [=1, we have

which can be written as

|

)

o — (51hal 51h2b1 _ 62hal_1 3(52h21)5_1 _ 53hal+1 . 53h2bl+1 . 51}13(}1 hj dlh
2 4 2 4 2 4 2 23
3
w,Cl12 = _?7Cl13 = 07
hB
0,clag = w, clag = —5
Sah3q
S1hgr — 8ah*hy_1 + d2hgi—1 — QT(M + 63hgi 1 + 03h*hyyy
Soh3w;_ h3 h  hih?
o1hd; — 52h2pl—1 + dohd;_1 — QTH + dshdi41 + 53h2pl+1 + ?(—gl? — ZT),
Soh3e;_ h3 . dih h?
w + 51h0,l - 52h2bl_1 + 52hal_1 - QTCll + 53hal+1 + 53h2bl+1 + ?(*l? - plT),
P dlyy = O7d113 = Oa
O, dl22 = P, dlgg = 0,
_0hgr g0, 02hgia 02h*hi—1  dshgier  303h*hipr 03h3quia
2 e 2 4 2 4 2
_Orhd; ik — Sohdi—1  G2h®pi_q ~ Ozhdipr 303h*pi1 _ Ssh3wipr  Wyh®
2 1P 2 4 2 4 2 18
. §1hal _s h2b . 62hal,1 52h2bl,1 _ (53hal+1 _ 3(53h2bl+1 _ 53h3cl+1 plh5
2 R 2 4 2 4 2 48
0,2 =0,
hg((Slefl + 61ml + 63ml+1), = 2,3, ey — ].,
alh blh2
1+ 5 + 5 doa;_1h + b3a;41h,
alh blh2
1y
3 + 24’
_bh?
24
AU+ BiUy + CiUs + DUy + E\Us = Hy,
a112 a113 Z1 b111 6112 b113 z2 0111 0112 0113 z3
alas alas ‘| [ ur | + | blar blaa  blas [ uz | + | clar claa  clog 1 [ uz | +
alsz alss V1 blz; blzz  blss V2 clz1 clza clss v3
dli; dlip dlis Z4 el eliz elis 25 hi1
dla1  dlaz  dlag ug | + | elar elaz elss us | = | hi2
dlz; dlzz dlss V4 els; elzz elss Vs hi13

pih?

(7_7

24

),

(3.21)

(3.22)
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where,

3

alyy = —4,al12 = —Eﬂllw =0,

alg; = aly3,aloy = alyg,alaz = alyo,

77 1 1 35 1 1 4 7
13y = —hgo — —h%hs + —h =h —hlhe + —h%hy + —h —hn3
alsr = 2 hgo = 155 hs o 5pt9s g g+ gt he  mg hiin o+ g ot
77 35 1 4 1 1 1 7
139 = —hdy + —hd; + —h? —hdy + —h? —hdy — —h? —hn3
alsz = yphdo o+ ghdy + o Py + s + G b2 o+ mog s — 1o Ps g,
77 35 1 4 1 1 1 7
lss = —4 4+ “Lhag + 2hay + —h2by + —hag + —h2by + ——has — ——h2bg + —h3
@3 t g a0t gghar g by phan g 02 4 oghas — o hT0s 4 go e,
h3
1y = 1.blyy = = blyg =
b 11 ,b 12 157b 13 Oa
h3
blog = 0,bloy = 1. blgg = —
21 5 22 9 23 15’
107 35 35 1 1 1 1
Loy = ——* 99 99,9, 1L L 19 1.3
blsq 15 hgo + 180h91 40h hi 6h92 45h93 + 40h hs + 15h g2,
107 35 35 1 1 1 1
blgy = ——— hdy + ——hdy — “2h%p; — =~hdy — —hds + — h2ps + —h3
32 15 o+ 180 1 10 P1 6 2 15 3+ 10 p3 + 5 wWa,

107 35 35 1 1 1 1
blas = 1 — —hag 4+ —>hay — “2h%by — ~hay — —has + —h%bs + — B>
33 15 10 T gt T gt T ghae T g has s e,

3

cly; =0,clip = —@,0113 =0,

clay = clyg, clag = clyy, claz = clyo,

e e A
Clyo = Gty — oy + Dy + Ly + W2y 4 ghds — o hps — ghbus,
clas = 16—0(;1ha0 - %)hal + %thl + %h@g + %thg + ihag — %h%g — %h%g,

dly; = 0,d1l12 =0,d113 =0,
dla; = 0,dlap = 0,dl23 =0,

85, B L1

61
dlz; = ——hgo +

1 1
_ 2 _ _ 2 = = 2
90 12079 ~ 70 T " T et P T s T e
61 35 1 1 35 1 1
Loy = 22 pg 202 L g L g2 R T T T
dlaz = =gghdo = 5 h"p1 = gz = 1l P2 + 1o = PP — g5 hds,
61 1 35 1 1 35 1
dlas = ——~hag — ——hay 4+ —=hay — ——h2by — —has — —h%b; — —h2b
33 = 79010 T 1502 T 90" T 150" P2 T 45198 T g P T g0 U
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el;; = 0,elyp =0,el13 =0,
elg; = 0,elyy = 0,ely3 =0,

1 35 1
131 = —hgy — =—h —h
els; 9 go 790 g1+ 720 g3,
1 35 1
135 = —hdy — ——hd ——hd
elsa 9 0 720 1+ 720 35
1 35 1
lss = —hag — — —
elss Qhao 720ha1 + 720]1@3,

S. KHAN AND A. KHAN

2 2
hi1 = —2h26 + BhBUOa hio = —2hu6 — 3ug + ﬁhgvo,

3

L 1 35 7
his = —2hol) + & (S(bov() + poug + hoz() + vo(8co + §a0h + oath — @}ﬁbl

72
1 1 1 1 35 7 1 1
—hay — ——h?by — —h?b 8 —doh + —dih — —h? —hdy — —h®py — ——h?
T 150" g 2~ ggplt bs) +uo (8o gdoh o+ odih = e Wiy + qeshds = Jomh P — o5 hps)
1 35 7 1 1 1 h3
8lo + =goh + —g1h — —h%hy + ——hgs — —h*hy — —h?h — (8 35m, — 4 :
+20(8lo + H0h + Zogh — yeh®hy + gephgs = geghthe = ahths) ) o { 8mo 4 35my — dmy + m
Now for [=n, we have
AnUn—5 + BnUn—4 + CnUn—S + DnUn—2 + EnUn—l + FnUn = Hn, (323)
which can be written as
anili  aniz  ani3 Zn—5 bnii  bniz  bnis Zn—4 cnil cniz  cnis Zn—3
anz1 ang2 ana3 Un—5 | + | bner bnoe  bnos Un—4 | + | cn21  cnoz  cnos Un—3 | +
ansi angz2 anss Un—5 bns1  bnza  bnas Un—4 cn31 €n32 €n3s Un—3
dni1  dniz  dnis Zn—2 eni1  eniz enis Zn—1
dnor  dnza  dnos Un—2 | + | en21 enza enas Un—1 | +
dnsi  dns2 dnss Un—2 ens1 ensz  enss Vn—1
frin fniz fnas Zn hn1
fnor fnaz  fnas Un | = | hn2 |, (3.24)
fna1 fnsa fnas Un hn3
where,
ani; = 0,ani2 = 0,an3 =0,
anoy = 0,ange = 0,ans3 =0,
1 19 157
= 7h n— 7h/ n—1 — 7h ns
a1 = ggton=s t gegRn-1 = 75 g
1 19 157
= —hd, _ —hd,_1 — —hd,,
a2 = goltn=—s + g1 = 75
1 19 157
= —ha,_ ~han_1——=h s
anss = ggtin=s F g in—1 = Tpha
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bn11 = 0, bn12 = O, bn13 = O,
b’I’L21 = 0, bngg = 07 bTLQS = 0
_ 8 2 19 5 19 2 9577 157 4
brsy = = hgn-s = 30h fn—s = 240hg” 2= 3607 Pm-2 F Gohon—a + 240h fn1 4 =g hgn = Sgph s
8 5 19 , 19 5 9577 157 5
bnzy = — - =hdn R g — hdn — — Rpp_o 4 —hdn_ —h Pr-1 + ———hdn — —h2p
N2 5 30 Pn—3 240 2 360 P2t 5 60 ' 950 Lt 720 240
9577 157
bnss = — hbn 3+ hanl han 2+%hbn 1—%]7«(?71 2+mh —*hnii_%hbm
3
cnip = O, cni2 = F,Cnlg = 0,
2h3
cno21 = O, Cno2 = O,CTL23 = T5’
1 9 5 157 5 2041 2h3qn_3
= ~hgn hgn —7hh,n han —hhn ——hhn = h’h, — hgn ,
nst 39”592 9 s 8091+30 2 60 ST 60ng 15
1 157 o 2 5 2041 5 2h3wn_3
= ~hd,_ hdn Ty 1y . hdn —h P2 — ——hdy, 19, o1 + =3
a2 =3 S+ 13 15 2+45 P =gl P "+ 80 ST 2 60 60 T
1 157 5 ) 2h%c,_3 133 19 , ) 2041 11
= ~han_3 + —h%b, h2bp_o + =73 hayn— ——hbn —7hbn - han + —han—_2,
Cnss = ghtn-3 + - +30 2t T T go 17 87 Tgp M T gphan—2
3
dn11 = —3, dnlz = 33h = 0,
dn21 = dnlg, dnzz = dnu, dn23 = dnlg,
8 16799 9 19 , 157 5 33h3¢n_o
dnsi = ——hgn—s + ———hgn + =h>hn_ hgn_ hn 50/ - ——hh _oon dnm2
a1 = g gn-s 360 +5 5T 1809 LT g2t g ! 60
8 2 5 5 16799 33h3wn_2
dnss = ——hdp_ hdn —h Pr_1 — —h P h Pr—z + ———hdp — —hdn — 20 Tne2
ftsz = Ty hdn=s = 8 2t ! *s st 360 180 4t 60
8 16799 9 5 157 5 33h3¢cn_o
dnss = —3 — —han_3 + ———han ——hn, han— h2b,,— hbn ——hb R
1133 15"19n=3 T+ 545 g Mn—2 180“ 1+5 3+ ! 60
38h°
eniy = 8,677412 = —W,enIS = 07
€N21 = €eni3, €n22 = €nii, €N23 = €Nni2,
1 11 2 19 1, 12089 157  38h%gn
ensy = gohgn—s h hn—2 hgn—l 36h hin—1 15h hn—3 360 hgn + hgn 2+ h hn 0
1 2 19 12089 157 _ 38h%wna
enzy = 90hd _3— 15}1 Pn—3 —|— hdn 2 — h Pn—2— 5, hdn—1 — 36h -1~ 350 hd, s ——h’p 60 ,
1 11 12 1
enss = 8+ han 3 — h bn—3 -‘r han 2 — thn—Q han 1 — fh bp_1 — ﬁh + ﬂ/’L bn
30 360
_ 38h Cn—1
60
80
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57h3
fni = =5, fnie = — , fnis =0,

fno1 = fnis, fnee = fn11,fn23 = fnia,

fMFi%#M3+EE#h _€%MML2mm”2_iE#M1+mﬁ%1+%gh HZ?T
fnﬁ?::é%h?pn73+‘ég%h?pn72+'gghdnfl—‘igﬁhdnfg 240h2 1_’;§Zh2 +_%§;hd __1§%%?gg’
fMS__5+§yfb ”_%gh% +§Eh% 2_§ﬂﬁ’17+$gh 2mh%"1+§ywn1—}§%?i
hn1 = —2hz 41,

hn2 = —2hu, 1,

3

hn3 = 72}7/!);4,1 + i

0 (157mn + 38Mmn—1 + 33mn_2 — 8mn_3).

4. CONVERGENCE ANALYSIS

Here, we discuss the convergence analysis of the method. We rewrite our method in the form

WX = H, (4.1)
where,
i A1 B1 Cl D1 T
B2 Cg D2
A3 B3 03 D3
W = (4.2)

Anfl anl Cnfl anl

where, A;, By, ..., Ei(l = 1,2, ...,n) are matrices of order 3 x 3 , X = [x1,Z2, ..., 2,_1]7, where x; = [z, u;,v;]7 and the
right side column vector H = [hy, ha, ..., hn_1]*, where hy = [hy1, hi2]T

Also,

WX = H+T, (4.3)
where T = [t1,tg,...,tn_1]T, where t; = [Z — 2,4 — w;, & — v;]T be the truncation error and X = [Z1, Zo, ..., En_1]7,
where #; = (2,4, 0;]T be the exact solution. From (4.1) and (4.3) we get,

W(X - X) T, (4.4)
WE = T, (4.5)
E = X-X 4.6
B8O
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Now by calculating the sum of entries of each row of the matrix W, we get

Sij =

8
R e —
185 ’
—3— —h?
15

1 7 35
-3+ hi(ao +do + go) — —=h*(bi + p1 + h1) + ==h(ar +di + g1)

48

1 1
+—nh(as +ds + g2) — 7h2(b2 + pa + ha)

72

1
— ——h*(bs + ps + h3)

il))gO 1480 1720
—@h?’(% +wy +c1) + %hg((h +wy + cz) — @h?’(% + w3 + ¢3),
TH+o4+w+p—h31=1,4,7..n—-3 j=1
T+o+w+p—h31=258,...,n—2 j=2
T+o+w+p+h3 B (c—1+wic1 +qi—1)
2
h5
_w _7(hl+pl)712376797"'7”’_1 .]:3
2 12
11
— b, j=1
11
—§h3, =2
8 33
603};3(an + wp—3 + Cnf?:) - 60;;?;(@”2 + Wy 2 + Cn72)
_99:3 _1olu3 L
60h (Qn—l + Wn—1 + cn—l) 60 h (qn + Wnp, + Cn)a J 3

j=3

235

(4.8)

(4.9)

Let 0 < M € Z* is the minimum of | a; |,| b || et |5 di |5 [ oo |, | wi |, g0 1, R |y | @ | and | my |. For sufficiently small

h, we can say that

8 .
T =1
8 3

S1j > 715}71 s j=2
8 3

Sy >

(4.10)
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11
?hg’ le
11

S > 7;h3, j=2
11
§h3M, j=3

8
> MR 1=1
51_15 h°, 1

S;>Mh?, 1=2,3,...n—1

15
S |
<t

3
11

)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

11
&ZSMWJZW
Therefore,
15
=1
Sh3M’
! < ! 1=2,3 1
Sl_ Wa = 2,9,...,1 —
3 —
1h3M’
We can easily show the irreducibility and monotonicity of matrix W for sufficiently small value of h. Then, W ™! exist
and W~ > 0.
Hence,
IWINEl = 1T
Let W' = (wyf;), then by [16], we get
n—1
dwiS o= 1,1<j<n-1
=1
Therefore,
wy —,
Lj = S,
n—1 n—1 1 1
—1 — * | < [
W= e SIS g = ey (
Jj= =
1<i<n-—1and
n—1
T = -
Tl = e, 30T
The error is obtained as
277
E|l = [W YT € s===IIT].
1] IW=ITI < ggrazz 1T

For fourth order method ||T| = O(h") by (2.13). Hence error is of order four. The above analysis shows that the
developed method is fourth order convergent. Similarly, we can prove the second order convergence of the method.

(=)=
E)NE
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5. NUMERICAL ILLUSTRATIONS

To verify the applicability of our developed method on existing problems, we solve the following six BVPs of the form
(1.1)-(1.4). The maximum absolute errors (MAE) are given in the Tables I-VI. Each problem has been decomposed
into system of third order BVPs. It is clearly shown from MAE that our method gives better accuracy to BVPs solved
by numerical methods such as [4, 7, 9, 13-15, 17].

Example 5.1. Sixth order BVP is considered as

ZO) +tz2(t) = —(24 4+ 11t + %) exp(t), 0 <t <1 (5.1)
with
2(0) = 0, 23(0)=-3, (5.2)
Z0) = 1, 24(0) = -8, (5.3)
(1) = exp(1), 2P(1) = —162'(1). (5.4)

The exact solution is z(t) = #(1 — t)exp(t). The MAE of the problem (5.1) are given in Table 1 and results are
compared with [4].

Example 5.2. Ninth order BVP with variable coefficients is considered as

@)+ 20@) + 2 (1) + 2O() +sintz'(t) + 2(t) = 5tsin(t) — cos(t) + t2 cos(t) — tsin?(t)
+sin(t) cos(t) + tcos(t), 0 <t <1 (5.5)
where,
2(0) = 0, 230)=-3, 290 =0, (5.6)
Z0) = 1, 29(0) =0, 27(0) = -7, (5.7)
(1) = cos(1) —sin(1), z2* (1) = 4sin(1) + cos(1), 27 (1) = sin(1) — 7 cos(1). (5.8)
The exact solution is z(t) = tcos(t). The MAE of the problem (5.5) are given in Table 2 and results are compared

with [7].
Example 5.3. Ninth order BVP is considered as

2 () = 2(t) = —9exp(t), 0 <t <1 (5.9)
with
200 = 1, 2%(0) = -2, 290) = (5.10)
Z0) = 0, 29(0) = -3, 2(7(0) = -6, (5.11)
Z(1) = —exp(l), 2D(1) =42(1), 27 (1) =72(1). (5.12)
The exact solution is z(t) = (1—t) exp(t). The MAE of the problem (5.9) are given in Table 3 and results are compared
with [13].
Example 5.4. Twelfth order BVP is considered as
20201 — 2(t) = —12(2tcos(t) + 11sin(t)) ,—1 <t <1 (5.13)
with
2(=1) = 0, z®(=1) = 6cos(1) — 6sin(1), 28 (1) = —12cos(1) — 30sin(1), (5.14)
20(=1) = —72cos(1) + 18sin(1), 2/(—1) = 2sin(1), z*(=1) = 8cos(1) + 62'(—1), (5.15)
2D(=1) = 42cos(1) — 72/(—1), 219(=1) = =20 cos(1) — 452 (1), 2'(1) = 2sin(1), (5.16)
2M(1) = —8cos(1) — 62'(1), 2V (1) = 42cos(1) — 72'(1), 219(1) = 20cos(1) + 452'(1). (5.17)

The exact solution is 2(t) = (t> — 1)sin(t). The MAE of the problem (5.13) are given in Table 4 and results are
compared with [14, 15].
(&)
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TABLE 1. MAE for Example 5.1

Our method n=3, n =16 n =32
Fourth order method for || 7.1632 x 10~° 3.8149 x 1077 2.1596 x 10~°
.- (03)
[4] 2.39 x 1077 3.43 x 1076 7.34 x 1078
Second order method for | 4.190 x 1073 1.369 x 103 3.817x 10*
(v.9) = (12 é)
[4] 2.99 x 1072 7.00 x 1073 1.80 x 1073
TABLE 2. MAE for Example 5.2
Our method n=10 n=20 n =40
Fourth order _method || 2.5256 x 10~7 2.3357 x 1078 2.4397 x 1077
for(¢, ) = (0, ;)
Second order method || 1.13 x 1073 4512 x 107% 3.505 x 10~ %
for(0. ) = (5.4
7] 2.324 x 107 — —
Example 5.5. Sixth order BVP is considered as
20(t) = 22(t)exp(t), 0 <t <1 (5.18)
with
2(0) = 1, 2¥(0) = 2(0), (5.19)
Z0) = 1, 24(0) = 2(0), (5.20)
(1) = exp(1), 2M(1) =2(1). (5.21)
The exact solution is z(¢) = exp(t). The MAE of the problem (5.18) are given in Table 5 and results are compared

with [9].

Example 5.6. Twelfth order non-linear BVP is considered as

20201+ 23(1) = 222 exp(t) ,0<t <1 (5.22)
with
2000 = 1, 280) =1, 290) =1, 20)=1 (5.23)
Z0) = =1, 2%0) =1, 2M(0) = -1, 29(0) =1, (5.24)
(1) = —exp(—1), 2(1) = exp(-1), 2D (1) = 2/(1), 219 (1) = 2V (1) (5.25)

The analytical solution is z(t) = exp(—t). The MAE of the problem (5.22) are given in Table 6 and results are
compared with [17].

6. CONCLUSION

The numerical solution of higher order BVPs is given by non-polynomial spline. In literature, higher even order
BVPs are solved by decomposing into the system of second order BVPs but here we decomposed the problem into
system of third order BVPs. Then the developed new algorithm was applied on higher order like ninth order BVPs.
Computationally our method is more viable due to use the lower degree splines rather than the higher degree splines

(=)
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TABLE 3. MAE for Example 5.3

Our method n=10 n =20 n =40
Fourth order _method || 4.3270 x 107 2.3426 x 1078 1.3816 x 1077
fOT(’(/J,’L/NJ) = <0, %)

Second order method || 8.484 x 10~* 2.393 x 1074 6.184 x 10~°
for(, ) = (5.4

[13] 1.232 x 107 — —

TABLE 4. MAE for Example 5.4

Our method n=3_8 n=16 n=32
Fourth order method || 2.1347 x 10~ % 1.3210 x 10°° 9.2074 x 10~ 7
for(v), ) = (0, ;)

Second order method || 2.627 x 10~2 7.013 x 1073 1.827 x 1073
for(t, ) = <;4;1

[14] — 4.69 x 107° -

[15] - 2.07 x 1073 -

TABLE 5. MAE for Example 5.5

Our method n=2y8 n=16 n=32

Fourth order method || 1.6824 x 10~ 7 9.0944 x 1079 5.2628 x 10~10
for(1, ) = (o, ;)

9] 7.02 x 107° 4.35 x 107 7.87 x 1077
Second order method || 2.3033 x 10~ ° 4.5168 x 10~ ° 1.0856 x 10~©
for(v, ) = | 515+ 310

9] 2.19 x 1071 3.88 x 107° 1.59 x 107

TABLE 6. MAE for Example 5.6

t Our method [17]

0.1 2.4840 x 10~10 1.41 x 1076
0.2 2.0083 x 1079 2.69 x 106
0.3 4.9198 x 1079 3.70 x 1076
0.4 8.6549 x 1077 4.35 x 1076
0.5 1.2912 x 108 4.58 x 1076
0.6 1.7417 x 1078 4.36 x 1076
0.7 2.1912 x 10~8 371 x 1076
0.8 2.6160 x 10~8 2.69 x 106

used by other authors. Error analysis of the developed algorithm is discussed in Section 4 which proved the fourth
order accuracy of the scheme (2.7). In this paper, sixth, ninth, and twelfth order BVPs have been solved by lower

(&)
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degree non-polynomial spline. Six numerical illustrations of linear as well as non-linear BVPs are discussed. MAE
shows that our results are better in accuracy and effectiveness than some existing fourth order methods.
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