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Abstract

In this paper, a new algorithm based on non-polynomial spline is developed for the solution of higher order

boundary value problems(BVPs). Employment of the method is done by decomposing the higher order BVP into
a system of third order BVPs. Convergence analysis of the developed method is also discussed. The method is

tested on higher order linear as well as non-linear BVPs which shows the accuracy and efficiency of the method

and also compared our results with some existing fourth order methods.
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1. Introduction

Higher order BVPs arise in diversified fields of sciences, particularly in fluid dynamics, astrophysics, induction
motors, beam theory, astronomy and applied sciences. In recent years, mostly higher-order BVPs are solved due to
their mathematical importance. In [1] author discussed conditions for the existence and uniqueness of the solutions
of BVPs. Several techniques have been developed to obtain the numerical solutions of BVPs of higher-order. For
example, finite difference scheme [6], spline collocation method [12], modified decomposition method [17], and Petrov-
Galerkin Method [7] were developed to solve higher order BVPs. In [3, 10, 11, 18], various splines methods were given
to obtain the solution of differential equations. Here, our aim is to give the solution of BVPs of the form:

z(3N) = F (t, z, z′, z(2), z(3)..., z(3N−1)), r < t < s (1.1)

with

z(r) = µ1, z
(3)(r) = µ2, z

(6)(r) = µ3, z
(9)(r) = µ4, ..., z

(3N−3)(r) = µN , (1.2)

z′(r) = ν1, z
(4)(r) = ν2, z

(7)(r) = ν3, z
(10)(r) = ν4, ..., z

(3N−2)(r) = νN , (1.3)

z′(s) = λ1, z
(4)(s) = λ2, z

(7)(s) = λ3, z
(10)(s) = λ4, ..., z

(3N−2)(s) = λN . (1.4)

where F is sufficiently smooth function in the interval [r, s], N = 2, 3, 4, µl, νl and λl (l = 1, 2..., n) are real constants.
We rewrite the equation (1.1)-(1.4) as follows:

z
(3)
1 (t) = z2(t), (1.5)

z
(3)
2 (t) = z3(t), (1.6)

.

.

.
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z
(3)
N (t) = f(t, z1, z

′
1, z

(2)
1 , z2, z

′
2, z

(2)
2 , ..., zN , z

′
N , z

(2)
N ), (1.7)

with modified conditions;

z1(r) = µ1, z
′
1(r) = ν1, z

′
1(s) = λ1, (1.8)

z2(r) = µ2, z
′
2(r) = ν2, z

′
2(s) = λ2, (1.9)

.

.

.

zN (r) = µN , z
′
N (r) = νN , z

′
N (s) = λN . (1.10)

The above system involves third order BVPs. For example, cubic spline scheme [2], quartic non-polynomial spline
method [5] and quintic spline methods [8] were used to solve third order BVPs. Here, we solve higher order BVPs.
There are various methods like the collocation method [13], non-polynomial spline method [4, 14, 15] were developed
to determine the numerical solutions of these problems. After implementing the linear problem over the developed
scheme, we get a system which consists of linear equations and in the case of a nonlinear problem, we get a system
of non-linear equations. The linear system is solved by the LU decomposition method and nonlinear system is solved
by the Newton Raphson method. The paper is comprised of five sections. Section 2 gives a derivation of method.
Application of the method for solving ninth order BVPs is discussed in section 3. Convergence analysis of the fourth
order method is discussed in section 4 and in section 5, six numerical examples and their comparison with some existing
fourth order methods are presented.

2. Derivation of scheme

Let

tl = r + lh, l = 0, 1, ..., n and h = (s− r)/(n+ 1),

and

Sl(t) = al sin k(t− tl) + bl cos k(t− tl) + cl(t− tl) + dl, (2.1)

be a non-polynomial spline Sl is defined on [r,s] of class C2[r, s] which reduces into an ordinary cubic spline in [r,s] as
k −→ 0 and k > 0. To calculate the coefficients al, bl, cl and dl, we define

Sl(tl) = zl, Sl(tl+1) = zl+1, (2.2)

S
′

l (tl) = Dl, S
′

l (tl+1) = Dl+1, (2.3)

S
′′′

l (tl) =
1

2
(Fl + Fl+1), l = 0, 1, ..., n. (2.4)

using (2.2), (2.3), and (2.4) we calculated the coefficients as

al = −Fl+1 + Fl

2k3
,

bl =
zl+1 − zl

η
+

(Fl+1 + Fl)

2k3

(
−φ+ sinφ

η

)
− hDl

η
,

cl = Dl +
Fl+1 + Fl

2k3
,

dl = zl − bl,

where, φ = kh and η = −1 + cosφ.
Using the continuity conditions, Sm

l−1(tl) = Sm
l (tl),m = 0, 1, 2 the following equations are derived as

A1Dl−1 +A2Dl = A3zl−1 +A4zl +A5(Fl−1 + Fl), (2.5)

B1Dl−1 +B2Dl = B3zl−1 +B4zl +B5zl+1 +B6Fl−1 +B7Fl +B8Fl+1, (2.6)
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where

A1 =
h(η + sinφ)

η
, A2 = −h, A3 = −φ sinφ

η
, A4 =

φ sinφ

η
, A5 =

h3(2− 2 cosφ− φ sinφ)

2φ2η
,

B1 = −hB3, B2 = h, B3 = cosφ, B4 = −1−B3, B5 = 1, B6 =
φB3 − sinφ

2k3
, B7 =

φη

2k3
, B8 =

−φ+ sinφ

2k3
.

Using (2.5) and (2.6), we obtain the following relation in terms of zl and Fl

τzl−2 + σzl−1 + ωzl + ρzl+1 = h3[ψ(Fl−2 + Fl+1) + ψ̃(Fl−1 + Fl)], l = 2, 3, ..., n− 1, (2.7)

where,

τ = cos2 φ, σ =
B3 + τ − 2 cos3 φ

η
,

ω =
−2B3 + τ + cos3 φ

η
, ρ = −B3,

ψ =
−φB3 +B3 sinφ

2φ3
, ψ̃ =

τ(2φB3 − 3φ− sinφ) + φB3(1 + sinφ)

2φ3η
.

The above recurrence relation gives (n − 2) linear equations in n unknowns zl, l = 1, 2, ..., n. We need two more
equations. These two equations are obtained for second and fourth order method respectively by using method of
undetermined coefficients given by [2]

3z0 − 4z1 + z2 = −2hD0 +
h3

12
[3F0 + 4F1 + F2] +O(h5), l = 1, (2.8)

−3zn−2 + 8zn−1 − 5zn = −2hDn+1 +
h3

12
[3Fn−2 + 10Fn−1 + 31Fn] +O(h5), l = n, (2.9)

and

3z0 − 4z1 + z2 = −2hD0 +
h3

60
[8F0 + 35F1 − 4F2 + F3] +O(h7), l = 1, (2.10)

−3zn−2 + 8zn−1 − 5zn = −2hDn+1 +
h3

60
[−8Fn−3 + 33Fn−2 + 38Fn−1 + 157Fn] +O(h7), l = n. (2.11)

Remark: Our method reduces to [2] when

(ψ, ψ̃) =
1

12
(1, 5). (2.12)

Truncation error (TE). After expanding equation (2.7) using Taylor series we obtained TE as follows:

tl = (τ + σ + ω + ρ)zl + (−2τ − σ + ρ)hz′l + (4τ + σ + ρ)
h2

2!
z
(2)
l +

(
−8τ − σ + ρ

3!
− (2ψ + 2ψ̃)

)
h3z

(3)
l

+

(
16τ + σ + ρ

4!
+ (ψ + ψ̃)

)
h4z

(4)
l +

(
−32τ − σ + ρ

5!
− 5ψ + ψ̃

2!

)
h5z

(5)
l +

(
64τ + σ + ρ

6!
+

7ψ + ψ̃

3!

)
h6z

(6)
l

+

(
−128τ − σ + ρ

7!
− 7ψ + ψ̃

4!

)
h7z

(7)
l +O(h8), l = 2, 3, ..., n− 1. (2.13)
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Method of different orders are obtained for various values of ψ and ψ̃.

The TE for the method of second order when (τ, σ, ω, ρ, ψ, ψ̃) =

(
− 1, 3,−3, 1, 1

12 ,
5
12

)
is given as

tl =


− 1

10
h5z

(5)
0 +O(h6), l=1,

−1

6
h5z

(5)
l +O(h6), l=2,3,...,n-1,

− 1

10
h5z(5)n +O(h6), l=n.

(2.14)

The TE for the method of fourth order when (τ, σ, ω, ρ, ψ, ψ̃) =

(
− 1, 3,−3, 1, 0, 12

)
is given as

tl =


− 29

2520
h7z

(7)
0 +O(h8), l=1,

1

240
h7z

(7)
l +O(h8), l=2,3,...,n-1,

677

5040
h7z(7)n +O(h8), l=n.

(2.15)

3. Application to ninth order BVPs

We consider a ninth order BVP of the form

z(9)(t) = a(t)z(8)(t) + b(t)z(7)(t) + c(t)z(6)(t) + d(t)z(5)(t) + p(t)z(4)(t) + w(t)z(3)(t)

+g(t)z(2)(t) + h(t)z′(t) + q(t)z(t) +m(t), (3.1)

with

z(r) = µ1, z(3)(r) = µ2, z(6)(r) = µ3, (3.2)

z′(r) = ν1, z(4)(r) = ν2, z(7)(r) = ν3, (3.3)

z′(s) = λ1, z(4)(s) = λ2, z(7)(s) = λ3, (3.4)

where µl , νl and λl (l = 1, 2, 3) are constants and a(t), b(t), c(t), d(t), p(t), w(t), g(t), h(t), q(t), and m(t) are
continuously differentiable functions defined on [r, s]. We rewrite the above problem as follows:

z(3)(t) = u(t), (3.5)

u(3)(t) = v(t), (3.6)

v(3)(t) = a(t)v(2)(t) + b(t)v′(t) + c(t)v(t) + d(t)u(2)(t) + p(t)u′(t) + w(t)u(t)

+g(t)z(2)(t) + h(t)z′(t) + q(t)z(t) +m(t), (3.7)

with

z(r) = µ1, z′(r) = ν1, z′(s) = λ1, (3.8)

u(r) = µ2, u′(r) = ν2, u′(s) = λ2, (3.9)

v(r) = µ3, v′(r) = ν3, v′(s) = λ3. (3.10)
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The following are the higher order approximations to derivatives used in (3.7)

z′l =
zl+1 − zl−1

2h
, z′l−2 =

−5zl−1 + 8zl − 3zl+1

2h
, (3.11)

z′l−1 =
−3zl−1 + 4zl − zl+1

2h
, z′l+1 =

zl−1 − 4zl + 3zl+1

2h
, (3.12)

z′′l =
zl−1 − 2zl + zl+1

h2
, z′′l−2 =

zl−1 − 2zl + zl+1

h2
− 2hzl

′′′, (3.13)

z′′l−1 =
zl−1 − 2zl + zl+1

h2
− hzl′′′, z′′l+1 =

zl−1 − 2zl + zl+1

h2
+ hzl

′′′, (3.14)

z̃′l =
zl+1 − zl−1

2h
+
h2

6
z′′′l −

h2

24
(z′′′l+1 − z′′′l−1) z̃′′l =

zl+1 − 2zl + zl−1
h2

+
h

3
(z′′′l − z′′′l−1). (3.15)

Here, we derive the scheme for method of fourth order when (τ, σ, ω, ρ) = (−1, 3,−3, 1), ψ = 0 and ψ̃ = 1/2. Therefore
by implementing the BVPs (3.5)-(3.7) on the scheme (2.7), we get the following system

τzl−2 + σzl−1 + ωzl + ρzl+1 =
h3

2
[ul−1 + ul], (3.16)

τul−2 + σul−1 + ωul + ρul+1 =
h3

2
[vl−1 + vl], (3.17)

τvl−2 + σvl−1 + ωvl + ρvl+1 =
h3

2
[Fl−1 + F̃l], (3.18)

where,

F̃l = F (t, zl, ul, vl, z̃
′
l, ũ
′
l, ṽ
′
l, z̃
′′
l , ũ
′′
l , ṽ
′′
l ),

Fl−1 = F (t, zl−1, ul−1, vl−1, z
′
l−1, u

′
l−1, v

′
l−1, z

′′
l−1, u

′′
l−1, v

′′
l−1), l = 2, 3, ..., n− 1.

Finally, we get the vector difference equation for the BVPs (3.1)

AlUl−2 +BlUl−1 + ClUl +DlUl+1 = Hl, (3.19)

which are as follows:[
al11 al12 al13
al21 al22 al23
al31 al32 al33

][
zl−2

ul−2

vl−2

]
+

[
bl11 bl12 bl13
bl21 bl22 bl23
bl31 bl32 bl33

][
zl−1

ul−1

vl−1

]
+

[
cl11 cl12 cl13
cl21 cl22 cl23
cl31 cl32 cl33

][
zl
ul

vl

]
+

[
dl11 dl12 dl13
dl21 dl22 dl23
dl31 dl32 dl33

][
zl+1

ul+1

vl+1

]
=

[
hl1

hl2

hl3

]
, l = 2, 3, ..., n− 1 (3.20)

where,

al11 = τ, al12 = 0, al13 = 0,

al21 = 0, al22 = τ, al23 = 0,

al31 = 0, al32 = 0, al33 = τ,

bl11 = σ, bl12 = −h
3

2
, bl13 = 0,

bl21 = 0, bl22 = σ, bl23 = −h
3

2
,

bl31 = −δ1hgl
2

+
δ1h

2hl
4
− δ2hgl−1

2
+

3δ2h
2hl−1
4

− δ3hgl+1

2
− δ3h

2hl+1

4
− δ1h

3ql
2

,

bl32 = −δ1hdl
2

+
δ1h

2pl
4
− δ2hdl−1

2
+

3δ2h
2pl−1
4

− δ3hdl+1

2
− δ3h

2pl+1

4
− δ1h

3wl

2
+
h3

2
(
glh

3
− hlh

2

24
),
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bl33 = σ − δ1hal
2

+
δ1h

2bl
4
− δ2hal−1

2
+

3δ2h
2bl−1
4

− δ3hal+1

2
− δ3h

2bl+1

4
− δ1h

3cl
2

+
h3

2
(
dlh

3
− plh

2

24
),

cl11 = ω, cl12 = −h
3

2
, cl13 = 0,

cl21 = 0, cl22 = ω, cl23 = −h
3

2
,

cl31 = δ1hgl − δ2h2hl−1 + δ2hgl−1 −
δ2h

3ql−1
2

+ δ3hgl+1 + δ3h
2hl+1

cl32 = δ1hdl − δ2h2pl−1 + δ2hdl−1 −
δ2h

3wl−1

2
+ δ3hdl+1 + δ3h

2pl+1 +
h3

2
(−glh

3
− hlh

2

6
),

cl33 = ω + δ1hal − δ2h2bl−1 + δ2hal−1 −
δ2h

3cl−1
2

+ δ3hal+1 + δ3h
2bl+1 +

h3

2
(−dlh

3
− plh

2

6
),

dl11 = ρ, dl12 = 0, dl13 = 0,

dl21 = 0, dl22 = ρ, dl23 = 0,

dl31 = −δ1hgl
2
− δ1h2hl −

δ2hgl−1
2

+
δ2h

2hl−1
4

− δ3hgl+1

2
− 3δ3h

2hl+1

4
− δ3h

3ql+1

2
,

dl32 = −δ1hdl
2
− δ1h2pl −

δ2hdl−1
2

+
δ2h

2pl−1
4

− δ3hdl+1

2
− 3δ3h

2pl+1

4
− δ3h

3wl+1

2
+
hlh

5

48
,

dl33 = ρ− δ1hal
2
− δ1h2bl −

δ2hal−1
2

+
δ2h

2bl−1
4

− δ3hal+1

2
− 3δ3h

2bl+1

4
− δ3h

3cl+1

2
+
plh

5

48
,

hl1 = 0, hl2 = 0,

hl3 = h3(δ2ml−1 + δ1ml + δ3ml+1), l = 2, 3, ..., n− 1,

where

δ1 = 1 +
alh

3
+
blh

2

6
− δ2al−1h+ δ3al+1h,

δ2 = 1− alh

3
+
blh

2

24
,

δ3 = −blh
2

24
.

Now for l=1, we have

A1U1 +B1U2 + C1U3 +D1U4 + E1U5 = H1, (3.21)

which can be written as

[
a111 a112 a113
a121 a122 a123
a131 a132 a133

][
z1
u1

v1

]
+

[
b111 b112 b113
b121 b122 b123
b131 b132 b133

][
z2
u2

v2

]
+

[
c111 c112 c113
c121 c122 c123
c131 c132 c133

][
z3
u3

v3

]
+

[
d111 d112 d113
d121 d122 d123
d131 d132 d133

][
z4
u4

v4

]
+

[
e111 e112 e113
e121 e122 e123
e131 e132 e133

][
z5
u5

v5

]
=

[
h11

h12

h13

]
, (3.22)
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where,

a111 = −4, a112 = −7h3

12
, a113 = 0,

a121 = a113, a122 = a111, a123 = a112,

a131 =
77

45
hg0 −

1

120
h2h3 +

1

720
hg3 +

35

48
hg1 +

1

90
h2h2 +

1

72
h2h1 +

4

45
hg2 +

7

12
h3q1,

a132 =
77

45
hd0 +

35

48
hd1 +

1

72
h2p1 +

4

45
hd2 +

1

90
h2p2 +

1

720
hd3 −

1

120
h2p3 +

7

12
h3w1,

a133 = −4 +
77

45
ha0 +

35

48
ha1 +

1

72
h2b1 +

4

45
ha2 +

1

90
h2b2 +

1

720
ha3 −

1

120
h2b3 +

7

12
h3c1,

b111 = 1, b112 =
h3

15
, b113 = 0,

b121 = 0, b122 = 1, b123 =
h3

15
,

b131 = −107

45
hg0 +

35

180
hg1 −

35

40
h2h1 −

1

6
hg2 −

1

45
hg3 +

1

40
h2h3 +

1

15
h3q2,

b132 = −107

45
hd0 +

35

180
hd1 −

35

40
h2p1 −

1

6
hd2 −

1

45
hd3 +

1

40
h2p3 +

1

15
h3w2,

b133 = 1− 107

45
ha0 +

35

180
ha1 −

35

40
h2b1 −

1

6
ha2 −

1

45
ha3 +

1

40
h2b3 +

1

15
h3c2,

c111 = 0, c112 = −h
3

60
, c113 = 0,

c121 = c113, c122 = c111, c123 = c112,

c131 =
104

60
hg0 −

1

72
h2h3 +

35

120
h2h1 −

49

72
hg1 +

2

45
h2h2 +

4

45
hg2 +

1

24
hg3 −

1

60
h3q3,

c132 =
104

60
hd0 −

49

72
hd1 +

35

120
h2p1 +

4

45
hd2 +

2

45
h2p2 +

1

24
hd3 −

1

72
h2p3 −

1

60
h3w3,

c133 =
104

60
ha0 −

49

72
ha1 +

35

120
h2b1 +

4

45
ha2 +

2

45
h2b2 +

1

24
ha3 −

1

72
h2b3 −

1

60
h3c3,

d111 = 0, d112 = 0, d113 = 0,

d121 = 0, d122 = 0, d123 = 0,

d131 = −61

90
hg0 +

35

120
hg1 −

35

720
h2h1 −

1

180
hg2 −

1

180
h2h2 −

1

45
hg3 −

1

240
h2h3,

d132 = −61

90
hd0 −

35

720
h2p1 −

1

180
hd2 −

1

180
h2p2 +

35

120
hd1 −

1

240
h2p3 −

1

45
hd3,

d133 = −61

90
ha0 −

1

180
ha2 +

35

120
ha1 −

1

180
h2b2 −

1

45
ha3 −

35

720
h2b1 −

1

240
h2b3,
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e111 = 0, e112 = 0, e113 = 0,

e121 = 0, e122 = 0, e123 = 0,

e131 =
1

9
hg0 −

35

720
hg1 +

1

720
hg3,

e132 =
1

9
hd0 −

35

720
hd1 +

1

720
hd3,

e133 =
1

9
ha0 −

35

720
ha1 +

1

720
ha3,

h11 = −2hz′0 +
2

15
h3u0, h12 = −2hu′0 − 3u0 +

2

15
h3v0,

h13 = −2hv′0 +
h3

60

(
8
(
b0v
′
0 + p0u

′
0 + h0z

′
0

)
+ v0

(
8c0 +

1

2
a0h+

35

72
a1h−

7

48
h2b1

+
1

180
ha2 −

1

180
h2b2 −

1

720
h2b3

)
+ u0

(
8f0 +

1

2
d0h+

35

72
d1h−

7

48
h2p1 +

1

180
hd2 −

1

180
h2p2 −

1

720
h2p3

)
+ z0

(
8l0 +

1

2
g0h+

35

72
g1h−

7

48
h2h1 +

1

180
hg2 −

1

180
h2h2 −

1

720
h2h3

))
+
h3

60

(
8m0 + 35m1 − 4m2 +m3

)
.

Now for l=n, we have

AnUn−5 +BnUn−4 + CnUn−3 +DnUn−2 + EnUn−1 + FnUn = Hn, (3.23)

which can be written as

[
an11 an12 an13

an21 an22 an23

an31 an32 an33

][
zn−5

un−5

vn−5

]
+

[
bn11 bn12 bn13

bn21 bn22 bn23

bn31 bn32 bn33

][
zn−4

un−4

vn−4

]
+

[
cn11 cn12 cn13

cn21 cn22 cn23

cn31 cn32 cn33

][
zn−3

un−3

vn−3

]
+

[
dn11 dn12 dn13

dn21 dn22 dn23

dn31 dn32 dn33

][
zn−2

un−2

vn−2

]
+

[
en11 en12 en13

en21 en22 en23

en31 en32 en33

][
zn−1

un−1

vn−1

]
+

[
fn11 fn12 fn13

fn21 fn22 fn23

fn31 fn32 fn33

][
zn
un

vn

]
=

[
hn1

hn2

hn3

]
, (3.24)

where,

an11 = 0, an12 = 0, an13 = 0,

an21 = 0, an22 = 0, an23 = 0,

an31 =
1

90
hgn−3 +

19

360
hgn−1 −

157

72
hgn,

an32 =
1

90
hdn−3 +

19

360
hdn−1 −

157

72
hdn,

an33 =
1

90
han−3 +

19

360
han−1 −

157

72
han,
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bn11 = 0, bn12 = 0, bn13 = 0,

bn21 = 0, bn22 = 0, bn23 = 0,

bn31 = − 8

45
hgn−3 −

1

30
h2hn−3 −

11

240
hgn−2 −

19

360
h2hn−2 +

19

60
hgn−1 +

11

240
h2hn−1 +

9577

720
hgn − 157

240
h2hn,

bn32 = − 8

45
hdn−3 −

1

30
h2pn−3 −

11

240
hdn−2 −

19

360
h2pn−2 +

19

60
hdn−1 +

11

240
h2pn−1 +

9577

720
hdn − 157

240
h2pn,

bn33 = − 1

30
h2bn−3 +

19

60
han−1 −

11

240
han−2 +

11

240
h2bn−1 −

19

360
h2bn−2 +

9577

720
han − 8

45
han−3 −

157

240
h2bn,

cn11 = 0, cn12 =
2h3

15
, cn13 = 0,

cn21 = 0, cn22 = 0, cn23 =
2h3

15
,

cn31 =
1

3
hgn−3 +

11

15
hgn−2 −

1

9
h2hn−3 +

133

180
hgn−1 +

11

30
h2hn−2 −

19

60
h2hn−1 +

157

45
h2hn − 2041

60
hgn +

2h3qn−3

15
,

cn32 =
1

3
hdn−3 +

11

15
hdn−2 +

157

45
h2pn − 1

9
h2pn−3 +

133

180
hdn−1 +

11

30
h2pn−2 −

2041

60
hdn − 19

60
h2pn−1 +

2h3wn−3

15
,

cn33 =
1

3
han−3 +

157

45
h2bn +

11

30
h2bn−2 +

2h3cn−3

15
+

133

180
han−1 −

19

60
h2bn−1 −

1

9
h2bn−3 −

2041

60
han +

11

15
han−2,

dn11 = −3, dn12 = −33h3

60
, dn13 = 0,

dn21 = dn13, dn22 = dn11, dn23 = dn12,

dn31 = − 8

45
hgn−3 +

16799

360
hgn +

1

5
h2hn−3 −

38

180
hgn−1 −

11

8
hgn−2 +

19

20
h2hn−1 −

157

20
h2hn − 33h3qn−2

60
,

dn32 = − 8

45
hdn−3 −

11

8
hdn−2 +

19

20
h2pn−1 −

157

20
h2pn +

1

5
h2pn−3 +

16799

360
hdn − 38

180
hdn−1 −

33h3wn−2

60
,

dn33 = −3− 8

45
han−3 +

16799

360
han − 11

8
han−2 −

38

180
han−1 +

1

5
h2bn−3 +

19

20
h2bn−1 −

157

20
h2bn − 33h3cn−2

60
,

en11 = 8, en12 = −38h3

60
, en13 = 0,

en21 = en13, en22 = en11, en23 = en12,

en31 =
1

90
hgn−3 −

11

30
h2hn−2 −

19

24
hgn−1 −

19

36
h2hn−1 −

1

15
h2hn−3 −

12089

360
hgn +

11

15
hgn−2 +

157

15
h2hn − 38h3qn−1

60
,

en32 =
1

90
hdn−3 −

1

15
h2pn−3 +

11

15
hdn−2 −

11

30
h2pn−2 −

19

24
hdn−1 −

19

36
h2pn−1 −

12089

360
hdn +

157

15
h2pn − 38h3wn−1

60
,

en33 = 8 +
1

90
han−3 −

1

15
h2bn−3 +

11

15
han−2 −

11

30
h2bn−2 −

19

24
han−1 −

19

36
h2bn−1 −

12089

360
han +

157

15
h2bn

− 38h3cn−1

60
,
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fn11 = −5, fn12 = −157h3

60
, fn13 = 0,

fn21 = fn13, fn22 = fn11, fn23 = fn12,

fn31 =
1

90
h2hn−3 +

11

240
h2hn−2 −

785

144
h2hn − 11

240
hgn−2 −

38

240
h2hn−1 +

19

36
hgn−1 +

157

16
hgn − 157h3qn

60
,

fn32 =
1

90
h2pn−3 +

11

240
h2pn−2 +

19

36
hdn−1 −

11

240
hdn−2 −

38

240
h2pn−1 −

785

144
h2pn +

157

16
hdn − 157h3wn

60
,

fn33 = −5 +
1

90
h2bn−3 −

785

144
h2bn +

11

240
h2bn−2 −

11

240
han−2 +

157

16
han − 38

240
h2bn−1 +

19

36
han−1 −

157h3cn
60

,

hn1 = −2hz′n+1,

hn2 = −2hu′n+1,

hn3 = −2hv′n+1 +
h3

60

(
157mn + 38mn−1 + 33mn−2 − 8mn−3

)
.

4. Convergence analysis

Here, we discuss the convergence analysis of the method. We rewrite our method in the form

WX = H, (4.1)

where,

W =



A1 B1 C1 D1

B2 C2 D2

A3 B3 C3 D3

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

An−1 Bn−1 Cn−1 Dn−1

An Bn Cn Dn En


(4.2)

where, Al, Bl, ..., El(l = 1, 2, ..., n) are matrices of order 3× 3 , X = [x1, x2, ..., xn−1]T , where xl = [zl, ul, vl]
T and the

right side column vector H = [h1, h2, ..., hn−1]T , where hl = [hl1, hl2]T .
Also,

WX̃ = H + T, (4.3)

where T = [t1, t2, ..., tn−1]T , where tl = [z̃l − zl, ũl − ul, ṽl − vl]T be the truncation error and X̃ = [x̃1, x̃2, ..., x̃n−1]T ,
where x̃l = [z̃l, ũl, ṽl]

T be the exact solution. From (4.1) and (4.3) we get,

W (X̃ −X) = T, (4.4)

WE = T, (4.5)

E = X̃ −X. (4.6)
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Now by calculating the sum of entries of each row of the matrix W, we get

S1j =



−3− 8

15
h3, j=1

−3− 8

15
h3, j=2

−3 + h
1

2
(a0 + d0 + g0)− 7

48
h2(b1 + p1 + h1) +

35

72
h(a1 + d1 + g1)

+
1

180
h(a2 + d2 + g2)− 1

180
h2(b2 + p2 + h2)− 1

720
h2(b3 + p3 + h3)

−35

60
h3(q1 + w1 + c1) +

4

60
h3(q2 + w2 + c2)− 1

60
h3(q3 + w3 + c3), j=3

(4.7)

Slj =



τ + σ + ω + ρ− h3, l = 1, 4, 7, ..., n− 3 j=1

τ + σ + ω + ρ− h3, l = 2, 5, 8, ..., n− 2 j=2

τ + σ + ω + ρ+ h3
(
− (cl−1 + wl−1 + ql−1)

2

− (cl + wl + ql)

2

)
− h5

12
(hl + pl), l = 3, 6, 9, ..., n− 1 j=3

(4.8)

Snj =



−11

3
h3, j=1

−11

3
h3, j=2

8

60
h3(qn−3 + wn−3 + cn−3)− 33

60
h3(qn−2 + wn−2 + cn−2)

−38

60
h3(qn−1 + wn−1 + cn−1)− 157

60
h3(qn + wn + cn), j=3.

(4.9)

Let 0 < M ∈ Z+ is the minimum of | al |, | bl |, | cl |, | dl |, | pl |, | wl |, | gl |, | hl |, | ql | and | ml |. For sufficiently small
h, we can say that

S1j ≥



8

15
h3, j=1

8

15
h3, j=2

8

15
h3M, j=3

(4.10)

Slj ≥


h3, l = 1, 4, ..., n− 3 j=1

h3, l = 2, 5, ..., n− 2 j=2

h3M, l = 3, 6, ..., n− 1 j=3

(4.11)
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Snj ≥



11

3
h3, j=1

11

3
h3, j=2

11

3
h3M, j=3

(4.12)

S1 ≥
8

15
Mh3, l = 1 (4.13)

Sl ≥Mh3, l = 2, 3, ..., n− 1 (4.14)

Sn ≥
11

3
Mh3, l = n. (4.15)

Therefore,

1

Sl
≤



15

8h3M
, l = 1

1

Mh3
, l = 2, 3, ..., n− 1

3

11h3M
, l = n.

(4.16)

We can easily show the irreducibility and monotonicity of matrix W for sufficiently small value of h . Then, W−1 exist
and W−1 ≥ 0.
Hence,

‖W‖‖E‖ = ‖T‖. (4.17)

Let W−1 = (w∗l,j), then by [16], we get

n−1∑
l=1

w∗l,jSl = 1, 1 ≤ j ≤ n− 1. (4.18)

Therefore,

w∗l,j ≤ 1

Sl
, (4.19)

‖W−1‖ = max
1≤l≤n−1

n−1∑
j=1

|w∗l,j | ≤
n−1∑
l=1

1

Sl
=

1

h3M

(
15

8
+ 1 +

3

11

)
,

1 ≤ l ≤ n− 1 and (4.20)

‖Tl‖ = max
1≤l≤n−1

n−1∑
l=1

|Tl|. (4.21)

The error is obtained as

‖E‖ = ‖W−1‖‖T‖ ≤ 277

88h3M
‖T‖. (4.22)

For fourth order method ‖T‖ = O(h7) by (2.13). Hence error is of order four. The above analysis shows that the
developed method is fourth order convergent. Similarly, we can prove the second order convergence of the method.
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5. Numerical Illustrations

To verify the applicability of our developed method on existing problems, we solve the following six BVPs of the form
(1.1)-(1.4). The maximum absolute errors (MAE) are given in the Tables I-VI. Each problem has been decomposed
into system of third order BVPs. It is clearly shown from MAE that our method gives better accuracy to BVPs solved
by numerical methods such as [4, 7, 9, 13–15, 17].

Example 5.1. Sixth order BVP is considered as

z(6)(t) + tz(t) = −(24 + 11t+ t3) exp(t), 0 ≤ t ≤ 1 (5.1)

with

z(0) = 0, z(3)(0) = −3, (5.2)

z′(0) = 1, z(4)(0) = −8, (5.3)

z′(1) = exp(1), z(4)(1) = −16z′(1). (5.4)

The exact solution is z(t) = t(1 − t) exp(t). The MAE of the problem (5.1) are given in Table 1 and results are
compared with [4].

Example 5.2. Ninth order BVP with variable coefficients is considered as

z(9)(t) + z(7)(t) + tz(4)(t) + z(3)(t) + sin tz′(t) + z(t) = 5t sin(t)− cos(t) + t2 cos(t)− t sin2(t)

+ sin(t) cos(t) + t cos(t), 0 ≤ t ≤ 1 (5.5)

where,

z(0) = 0, z(3)(0) = −3, z(6)(0) = 0, (5.6)

z′(0) = 1, z(4)(0) = 0, z(7)(0) = −7, (5.7)

z′(1) = cos(1)− sin(1), z(4)(1) = 4 sin(1) + cos(1), z(7)(1) = sin(1)− 7 cos(1). (5.8)

The exact solution is z(t) = t cos(t). The MAE of the problem (5.5) are given in Table 2 and results are compared
with [7].

Example 5.3. Ninth order BVP is considered as

z(9)(t)− z(t) = −9 exp(t), 0 ≤ t ≤ 1 (5.9)

with

z(0) = 1, z(3)(0) = −2, z(6)(0) = −5, (5.10)

z′(0) = 0, z(4)(0) = −3, z(7)(0) = −6, (5.11)

z′(1) = − exp(1), z(4)(1) = 4z′(1), z(7)(1) = 7z′(1). (5.12)

The exact solution is z(t) = (1−t) exp(t). The MAE of the problem (5.9) are given in Table 3 and results are compared
with [13].

Example 5.4. Twelfth order BVP is considered as

z(12)(t)− z(t) = −12(2t cos(t) + 11 sin(t)) ,−1 ≤ t ≤ 1 (5.13)

with

z(−1) = 0, z(3)(−1) = 6 cos(1)− 6 sin(1), z(6)(−1) = −12 cos(1)− 30 sin(1), (5.14)

z(9)(−1) = −72 cos(1) + 18 sin(1), z′(−1) = 2 sin(1), z(4)(−1) = 8 cos(1) + 6z′(−1), (5.15)

z(7)(−1) = 42 cos(1)− 7z′(−1), z(10)(−1) = −20 cos(1)− 45z′(−1), z′(1) = 2 sin(1), (5.16)

z(4)(1) = −8 cos(1)− 6z′(1), z(7)(1) = 42 cos(1)− 7z′(1), z(10)(1) = 20 cos(1) + 45z′(1). (5.17)

The exact solution is z(t) = (t2 − 1) sin(t). The MAE of the problem (5.13) are given in Table 4 and results are
compared with [14, 15].
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Table 1. MAE for Example 5.1

Our method n = 8 n = 16 n = 32
Fourth order method for

(ψ, ψ̃) =

(
0, 12

) 7.1632× 10−6 3.8149× 10−7 2.1596× 10−8

[4] 2.39× 10−4 3.43× 10−6 7.34× 10−8

Second order method for

(ψ, ψ̃) =

(
1
12 ,

5
12

) 4.190× 10−3 1.369× 10−3 3.817× 10−4

[4] 2.99× 10−2 7.00× 10−3 1.80× 10−3

Table 2. MAE for Example 5.2

Our method n = 10 n = 20 n = 40
Fourth order method

for(ψ, ψ̃) =

(
0, 12

) 2.5256× 10−7 2.3357× 10−8 2.4397× 10−9

Second order method

for(ψ, ψ̃) =

(
1
12 ,

5
12

) 1.13× 10−3 4.512× 10−4 3.505× 10−4

[7] 2.324× 10−6 − −

Example 5.5. Sixth order BVP is considered as

z(6)(t) = z2(t) exp(t), 0 ≤ t ≤ 1 (5.18)

with

z(0) = 1, z(3)(0) = z(0), (5.19)

z′(0) = 1, z(4)(0) = z(0), (5.20)

z′(1) = exp(1), z(4)(1) = z′(1). (5.21)

The exact solution is z(t) = exp(t). The MAE of the problem (5.18) are given in Table 5 and results are compared
with [9].

Example 5.6. Twelfth order non-linear BVP is considered as

z(12)(t) + z(3)(t) = 2z2(t) exp(t) , 0 ≤ t ≤ 1 (5.22)

with

z(0) = 1, z(3)(0) = 1, z(6)(0) = 1, z(9)(0) = 1 (5.23)

z′(0) = −1, z(4)(0) = 1, z(7)(0) = −1, z(10)(0) = 1, (5.24)

z′(1) = − exp(−1), z(4)(1) = exp(−1), z(7)(1) = z′(1), z(10)(1) = z(4)(1) (5.25)

The analytical solution is z(t) = exp(−t). The MAE of the problem (5.22) are given in Table 6 and results are
compared with [17].

6. Conclusion

The numerical solution of higher order BVPs is given by non-polynomial spline. In literature, higher even order
BVPs are solved by decomposing into the system of second order BVPs but here we decomposed the problem into
system of third order BVPs. Then the developed new algorithm was applied on higher order like ninth order BVPs.
Computationally our method is more viable due to use the lower degree splines rather than the higher degree splines
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Table 3. MAE for Example 5.3

Our method n = 10 n = 20 n = 40
Fourth order method

for(ψ, ψ̃) =

(
0, 12

) 4.3270× 10−7 2.3426× 10−8 1.3816× 10−9

Second order method

for(ψ, ψ̃) =

(
1
12 ,

5
12

) 8.484× 10−4 2.393× 10−4 6.184× 10−5

[13] 1.232× 10−5 − −

Table 4. MAE for Example 5.4

Our method n = 8 n = 16 n = 32
Fourth order method

for(ψ, ψ̃) =

(
0, 12

) 2.1347× 10−4 1.3210× 10−5 9.2074× 10−7

Second order method

for(ψ, ψ̃) =

(
1
24 ,

11
24

) 2.627× 10−2 7.013× 10−3 1.827× 10−3

[14] − 4.69× 10−5 −
[15] − 2.07× 10−3 −

Table 5. MAE for Example 5.5

Our method n = 8 n = 16 n = 32
Fourth order method

for(ψ, ψ̃) =

(
0, 12

) 1.6824× 10−7 9.0944× 10−9 5.2628× 10−10

[9] 7.02× 10−6 4.35× 10−6 7.87× 10−7

Second order method

for(ψ, ψ̃) =

(
1

240 ,
119
240

) 2.3033× 10−5 4.5168× 10−6 1.0856× 10−6

[9] 2.19× 10−4 3.88× 10−5 1.59× 10−6

Table 6. MAE for Example 5.6

t Our method [17]
0.1 2.4840× 10−10 1.41× 10−6

0.2 2.0083× 10−9 2.69× 10−6

0.3 4.9198× 10−9 3.70× 10−6

0.4 8.6549× 10−9 4.35× 10−6

0.5 1.2912× 10−8 4.58× 10−6

0.6 1.7417× 10−8 4.36× 10−6

0.7 2.1912× 10−8 3.71× 10−6

0.8 2.6160× 10−8 2.69× 10−6

used by other authors. Error analysis of the developed algorithm is discussed in Section 4 which proved the fourth
order accuracy of the scheme (2.7). In this paper, sixth, ninth, and twelfth order BVPs have been solved by lower
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degree non-polynomial spline. Six numerical illustrations of linear as well as non-linear BVPs are discussed. MAE
shows that our results are better in accuracy and effectiveness than some existing fourth order methods.
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