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Abstract

This paper presents an efficient numerical method to solve two versions of the Duffing equation by the hybrid
functions based on the combination of Block-pulse functions and Legendre polynomials. This method reduces the

solution of the considered problem to the solution of a system of algebraic equations. Moreover, the convergence

of the method is studied. Some examples are given to demonstrate the applicability and effectiveness of the
proposed method. Also, the obtained results are compared with some other results.
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1. Introduction

The Duffing equation or Duffing oscillator as a powerful instrument to discuss some phenomena in various fields of
science and engineering has been considered by scientists. This well-known dynamical system with exhibits chaotic
behavior and bifurcations, which is described by a nonlinear differential equation, was presented by George Duffing in
1918 [38]. Although the Duffing equation was first introduced in studying electronics, its applications were developed
in various fields such as brain modeling, orbit extraction, nonlinear mechanical oscillator, disease prediction, fuzzy
modeling, nonuniformity caused by an infinite domain, biological systems, and so on [6, 7, 11, 14–16, 36, 37].

Integral boundary value problems have received a great deal of attention due to their widespread applications
in different areas of applied sciences and engineering such as chemical engineering, underground water flow, heat
conduction, thermo-elasticity, and population dynamics [4, 18, 21, 24, 39]. It is worth mentioning that integral
boundary conditions can cover other kinds of non-local boundary conditions. For instance, three-point and multi-
point boundary conditions are considered as special cases [28, 29]. Here, as boundary value problems, we consider two
following versions of the Duffing equation, which we call them Version 1 and Version 2, respectively:

(1) The Duffing equation involving both integral and non-integral forcing terms is

v′′(t) + µv′(t) + f(t, v(t), v′(t)) +

∫ t

0

h(t, x, v(x)) dx = 0, 0 < t < 1, µ ∈ R− {0}, (1.1)

with the separated boundary conditions

r0v(0)− s0v
′(0) = a, r1v(1)− s1v

′(1) = b, (1.2)

where functions f : [0, 1]× R2 → R, h : [0, 1]× [0, 1]× R→ R are continuous and r0, r1, s0, s1, a, b ∈ R.
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(2) The forced Duffing equation is

v′′(t) + µv′(t) + f(t, v(t), v′(t)) = 0, 0 < t < 1, µ ∈ R− {0}, (1.3)

with the integral boundary conditions

v(0)− λ0v
′(0) =

∫ 1

0

k1(x)v(x) dx, v(1) + λ1v
′(1) =

∫ 1

0

k2(x)v(x) dx, (1.4)

where f : [0, 1]× R→ R, and constants λ0, λ1 are non-negative.

The existence and uniqueness of the solution of these two versions of the Duffing equation have been studied by some
researchers. Ahmad and Alghamdi [1] presented a generalized quasilinearization technique for studying the existence
and uniqueness of the solution of the Duffing equation Version 1. Also, the authors in [2, 3] using the quasilinearization
technique and in [12] using a constructive method have investigated these aspects for the Duffing equation Version
2. Furthermore, since the Duffing equation Version 1 is a Volterra integro-differential equation of second order, some
other aspects of such equations can be studied in [40–42].

Although many researchers have analytically and numerically solved the Duffing equation with initial value con-
ditions and two-point boundary conditions [8, 25, 27, 32, 33, 43, 44], there are few references for solving the above-
mentioned versions of the Duffing equation. Yao in [45] presented an iteration algorithm to solve the Version 1 of
the Duffing equation in the reproducing kernel space. Also, Geng [19] used an improved variational iteration method,
Balaji [9] used Legendre wavelet operational matrix, and Saadatmandi and Mashhadi-Fini [34] used the Legendre
pseudospectral method have solved the Version 1. For solving the Version 2, Geng and Cui [20] developed a method
based on the homotopy perturbation method (HPM) and the reproducing kernel Hilbert space method (RKHSM).

In recent years, the use of hybrid functions consisting of the combination of polynomials such as Legendre, Cheby-
shev, Lagrange, Bernoulli, Bernstein, and Taylor or Fourier series with the Block-pulse functions (BPFs), has been
considered by researchers and various numerical methods have been proposed for solving selected mathematical models
[5, 10, 17, 22, 23, 30].

In this work, an attempt is made to solve the two above-mentioned Duffing equations using the hybrid Legendre
Block-pulse functions. Hence, we organize the remainder of the paper as follows: In section 2, some definitions
and properties of hybrid Legendre Block-pulse functions are reviewed. In section 3, we apply the hybrid Legendre
Block-pulse functions method to construct approximate solutions for the selected Duffing equations. In section 4, the
error and convergence analysis of the method is studied by obtaining an upper bound of the error. Furthermore, the
applicability and effectiveness of the method are illustrated by means of some examples in section 5.

2. Preliminaries and definitions

In the current section, some definitions and properties of hybrid BPFs and Legendre polynomials are reviewed.
Also, required operational matrices are presented.

2.1. Hybrid functions.

Definition 2.1. A P -set of BPFs bp(t) on the interval [0, 1) is defined as [17]

bp(t) =

1,
p− 1

P
≤ t < p

P
,

0, o.w,

where p = 1, 2, . . . , P is the order of BPFs. The set {bp(t)} has orthogonality and disjointness properties on [0, 1).

Definition 2.2. A PQ-set of hybrid Legendre Block-pulse functions ϕpq(t) on the interval [0, 1) is defined as [17]

ϕpq(t) =

Lq(2Pt− 2p+ 1),
p− 1

P
≤ t < p

P
,

0, o.w,
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where Lq is the well-known Legendre polynomial of order q = 0, 1, 2, . . . , Q− 1, which is obtained with the following
formulas:

L0(t) = 1, L1(t) = t,

(q + 1)Lq+1(t) = (2q + 1)tLq(t)− qLq−1(t), t ∈ [−1, 1].

Note that since the BPFs and Legendre polynomials are both orthogonal and complete, then the set {ϕpq(t)} forms
an orthogonal complete system in L2[0, 1). Using the basis functions {ϕpq(t)}, a function g ∈ L2[0, 1) may be expanded
as [22]

g(t) =

∞∑
p=1

∞∑
q=0

gpq ϕpq(t).

Theorem 2.3. [26] Let Θ be a strictly convex normed space and Y be a finite dimensional subspace of Θ. For each
g ∈ Θ there exists a unique best approximation ḡ ∈ Y.

We let Θ = L2[0, 1) and consider the normed space Θ with the following norm:

||g||2 = 〈g, g〉 12 =

(∫ 1

0

|g(t)|2 dt

) 1
2

,

where 〈., .〉 denotes the inner product. Since Θ is a Hilbert space, it is also strictly convex. Let

Y = span{ϕ10(t), . . . , ϕ1(Q−1)(t), ϕ20(t), . . . , ϕ2(Q−1)(t), . . . , ϕP0(t), . . . , ϕP (Q−1)(t)}.

Since Y is a finite dimensional subspace of Θ, using Theorem 2.3 we have

g(t) ' ḡ(t) = gPQ(t) =

P∑
p=1

Q−1∑
q=0

gpq ϕpq(t) = GTΦ(t) = ΦT (t)G, (2.1)

where

Φ(t) = [ϕ10(t), . . . , ϕ1(Q−1)(t), ϕ20(t), . . . , ϕ2(Q−1)(t), . . . , ϕP0(t), . . . , ϕP (Q−1)(t)]
T ,

and

G = [g10, g11, . . . , g1(Q−1), g20, g21, . . . , g2(Q−1), . . . , gP0, gP1, . . . , gP (Q−1)]
T .

The hybrid coefficients gpq are obtained by

gpq =
〈g(t), ϕpq(t)〉
〈ϕpq(t), ϕpq(t)〉

, p = 1, 2, . . . , P, q = 0, 1, . . . , Q− 1. (2.2)

2.2. Operational matrices. To convert the integral term of the Duffing equation to an algebraic equation, we
consider the approximation of the integration of the vector Φ(t) as [17]∫ t

0

Φ(ς) dς ' Υ Φ(t), (2.3)

where Υ, i.e. the operational matrix of integration is defined as

Υ =


M S S . . . S
0 M S . . . S
0 0 M . . . S
...

...
...

. . .
...

0 0 0 . . . M


θ×θ

,
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where θ = PQ, 0 is the Q×Q zero matrix, and S and M have the following forms:

S =
1

P


1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


Q×Q

,

M =
1

2P



1 1 0 0 0 . . . 0 0 0 0 0
− 1

3 0 1
3 0 0 . . . 0 0 0 0 0

0 − 1
5 0 1

5 0 . . . 0 0 0 0 0
0 0 − 1

7 0 1
7 . . . 0 0 0 0 0

0 0 0 − 1
9 0 . . . 0 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 0 . . . 0 1

2Q−9 0 0 0

0 0 0 0 0 . . . −1
2Q−7 0 1

2Q−7 0 0

0 0 0 0 0 . . . 0 −1
2Q−5 0 1

2Q−5 0

0 0 0 0 0 . . . 0 0 −1
2Q−3 0 1

2Q−3

0 0 0 0 0 . . . 0 0 0 −1
2Q−1 0


Q×Q

.

The integration of the cross product of two hybrid function vectors Φ(t) can be obtained as [22]

C =

∫ 1

0

Φ(ς)ΦT (ς) dς =


D 0 0 . . . 0
0 D 0 . . . 0
0 0 D . . . 0
...

...
...

. . .
...

0 0 0 . . . D


θ×θ

, (2.4)

where D is a diagonal matrix as

D =
1

P


1 0 0 . . . 0
0 1

3 0 . . . 0
0 0 1

5 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
2Q−1


Q×Q

.

The matrix C is used to convert the integral terms of the boundary conditions to the algebraic equations. It should
be noted that since the matrix C is a diagonal matrix, in addition to saving memory storage, it also increases the
calculating speed. Also, we need to evaluate Φ(t)ΦT (t). To do this, let

Φ(t)ΦT (t)G = G̃Φ(t), (2.5)

where matrix G̃ is defined in [17].

3. Method implementation

In this section, we construct a numerical method to approximate the solutions of the Duffing equations (1.1)-(1.4)
using the considered hybrid functions. For this purpose, we put

v′′(t) ' VT
z Φ(t), (3.1)

where Vz = [v1, v2, . . . , vθ]
T is the unknown vector.

By applying integral operator to both sides of (3.1) on (0, t) and using Eq. (2.3), we will have

v′(t) ' VT
z ΥΦ(t) + v′(0) = (VT

z Υ + VT
α(0))Φ(t), (3.2)
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where

Vα(0) =

[
v′(0)

Q−1︷ ︸︸ ︷
0 0 . . . 0 v′(0)

Q−1︷ ︸︸ ︷
0 0 . . . 0 . . . v′(0)

Q−1︷ ︸︸ ︷
0 0 . . . 0︸ ︷︷ ︸

θ=PQ

]T
.

In the same way, by using equations (3.2) and (2.3), we get

v(t) ' VT
z Υ2Φ(t) + v′(0)t+ v(0) = (VT

z Υ2 + v′(0)ET + VT
(0))Φ(t), (3.3)

where E = [epq]θ×1 and epqs are the hybrid coefficients for function g(t) = t, which can be calculated by Eq. (2.2).
Also, the vector V(0) is considered as

V(0) =

[
v(0)

Q−1︷ ︸︸ ︷
0 0 . . . 0 v(0)

Q−1︷ ︸︸ ︷
0 0 . . . 0 . . . v(0)

Q−1︷ ︸︸ ︷
0 0 . . . 0︸ ︷︷ ︸

θ=PQ

]T
.

Next, it is necessary to expand the non-linear terms in terms of the hybrid functions. For this purpose, we consider
Eqs. (2.1) and (2.5) and obtain

u(t)v(t) ' (UTΦ(t))(VTΦ(t)) = UTΦ(t)ΦT (t)V = UT ṼΦ(t),

and

v3(t) = v2(t)v(t) ' (VT ṼΦ(t))(VTΦ(t)) = VT ṼΦ(t)ΦT (t)V = VT Ṽ
2
Φ(t),

and in the same way, va(t) ' VT Ṽ
a−1

Φ(t), where a is a positive integer number.

3.1. Implementation for Version 1. In this version of the Duffing equation, we consider the integral term as∫ t

0

h(t, x, v(x)) dx = h1(t)

∫ t

0

h2(x)h3(v(x)) dx.

The functions h2 and h3 can be approximated in terms of the vector Φ(t) as

h2(x) ' HT
2 Φ(t), h3(v(x)) ' HT

3 Φ(t). (3.4)

By using Eqs. (2.3), (2.5) and (3.4), the last integral can be written as∫ t

0

h2(x)h3(v(x)) dx ' HT
2 H̃3ΥΦ(t), (3.5)

where H̃3 can be calculated from Eq. (2.5). By substituting Eqs. (3.1), (3.2), (3.3) and (3.5) in Eq. (1.1), we get(
VT
z + µ(VT

z Υ + VT
α(0)) + FT + h1(t)HT

2 H̃3Υ

)
Φ(t) = 0. (3.6)

Also, by substituting Eqs. (3.2) and (3.3) in Eq. (1.2), we have

r0(VT
z Υ2 + v′(0)ET + VT

(0))Φ(0)− s0(VT
z Υ + VT

α(0))Φ(0)− a = 0, (3.7)

r1(VT
z Υ2 + v′(0)ET + VT

(0))Φ(1)− s1(VT
z Υ + VT

α(0))Φ(1)− b = 0, (3.8)

Now, by collocating Eq. (3.6) at the points t = tj = 2j−1
2Q ; j = 1, 2, . . . , θ, we obtain the following algebraic equations:(

VT
z + µ(VT

z Υ + VT
α(0)) + FT + h1(tj)H

T
2 H̃3Υ

)
Φ(tj) = 0, j = 1, 2, . . . , θ. (3.9)

Eqs. (3.7), (3.8) and (3.9) form a system of algebraic equations with unknowns v1, v2, . . . , vθ, v(0) and v′(0), which can
be solved by a proper numerical method. After obtaining the vector Vz = [v1, v2, . . . , vθ]

T , the approximate solution
of v(t) can be calculated by Eq. (3.3).
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3.2. Implementation for Version 2. For this version, we substitute Eqs. (3.1), (3.2), (3.3) in Eq. (1.3) and obtain(
VT
z + µ(VT

z Υ + VT
α(0)) + FT

)
Φ(t) = 0. (3.10)

If we collocate Eq. (3.10) at the points t = tj = 2j−1
2Q ; j = 1, 2, . . . , θ, the algebraic equations are obtained as(

VT
z + µ(VT

z Υ + VT
α(0)) + FT

)
Φ(tj) = 0, j = 1, 2, . . . , θ. (3.11)

Also, by using Eqs. (2.1) and (2.4), the integral terms in Eq. (1.4) can be written as∫ 1

0

ki(x)v(x) dx '
∫ 1

0

KT
i Φ(x)ΦT (x)V dx = KT

i CV, i = 1, 2. (3.12)

where VT = VT
z Υ2 + v′(0)ET + VT

(0).

By substituting Eqs. (3.2), (3.3) and (3.12) in Eq. (1.4), we get

(VT
z Υ2 + v′(0)ET + VT

(0))Φ(0)− λ0(VT
z Υ + VT

α(0))Φ(0)−KT
1 CV = 0, (3.13)

(VT
z Υ2 + v′(0)ET + VT

(0))Φ(1) + λ1(VT
z Υ + VT

α(0))Φ(1)−KT
2 CV = 0. (3.14)

Eqs. (3.11), (3.13) and (3.14) form a system of algebraic equations with unknowns v1, v2, . . . , vθ, v(0) and v′(0), which
can be solved by a proper numerical method. After obtaining the vector Vz = [v1, v2, . . . , vθ]

T , the approximate
solution of v(t) can be calculated by Eq. (3.3).

4. Error analysis

In current section, we obtain an upper bound of the error for the present method using a Hilbert space called the
Sobolev space as well as the relevant norm.

Definition 4.1. [13] Let β be a non-negative integer and (a, b) ⊂ R2 be a bounded interval. The vector space of the
functions ω ∈ L2(a, b) with the following definition is called the Sobolev space:

Hβ(a, b) =

{
ω|ω(m) ∈ L2(a, b), for 0 ≤ m ≤ β

}
.

For the Sobolev space, the relevant norm is defined as

‖ω‖Hβ(a,b) =

( β∑
m=0

‖ω(i)‖2L2(a,b)

) 1
2

.

Some properties of the Sobolev spaces are considered as follows:

• H0(a, b) ≡ L2(a, b),
• . . . Hβ+1(a, b) ⊂ Hβ(a, b) ⊂ . . . ⊂ H1(a, b) ⊂ L2(a, b).

Lemma 4.2. [13] Let {Lq}q=0 be the sequence of Legendre polynomials and Λd(t) =
∑d
q=0 lqLq(t) the best polynomial

approximation of degree d for ω ∈ L2(−1, 1). Then, for γ ≥ 1, there exists a constant δ > 0 such that

‖ω − Λd‖L∞(−1,1) ≤ δd
3
4−γ‖ω‖Hγ(−1,1),

for all functions ω in Hγ(−1, 1).

The following lemma is obviously obtained using Lemma 4.2.

Lemma 4.3. Let ω ∈ Hγ [0, 1) and let ωθ be the polynomial approximation of ω defined in Eq. (2.1). Then,

‖ω − ωθ‖L∞[0,1) ≤ δ(θ)
3
4−γ max

1≤k≤P
‖ω‖Hγ(Ik),

where Ik = [k−1
P , kP ) and δ is a positive constant.



CMDE Vol. 11, No. 2, 2023, pp. 241-253 247

Before explaining the following theorem, we convert equation (1.1) into a system of ordinary differential equations
of order one. Hence, we define functions w1(t) and w2(t) as

w1(t) = v(t), w2(t) = v′(t),

and obtain the following system of ordinary differential equations:
w′1(t) = w2(t) = f1(t, w1(t), w2(t)),

w′2(t) = −µw2(t)− f(t, w1(t), w2(t))−
∫ t

0

h(t, x, w1(x)) dx = f2(t, w1(t), w2(t)).
(4.1)

The same can be done for equation (1.3). We note that since the functions f and h are continuous, the functions f1

and f2 are continuous, too. Now, we consider system 4.1 in the matrix form as

W (t) = W (0) +

∫ t

0

F (x,W (x)) dx, (4.2)

where

W (t) = [w1(t), w2(t)]T , F (x,W (x)) =

(
f1(x,W (x))
f2(x,W (x))

)
.

Theorem 4.4. Let W ∈ Hγ [0, 1) and Wapp(t) = Wθ(t) be the exact solution and the approximate solution obtained by
the hybrid Legendre Block-pulse method for equation (4.2), respectively. Furthermore, assume that fi(x,W (x)), i = 1, 2
be a continuous function for 0 ≤ x ≤ t < 1 and that satisfies the Lipschitz condition

|fi(x,W1(x))− fi(x,W2(x))| ≤ Li ‖W1(x)−W2(x)‖∞, (4.3)

where Li > 0, i = 1, 2, is a Lipschitz constant. There exists a positive constant ε such that

‖W −Wapp‖∞ ≤ ε max
1≤k≤P

‖ws‖Hγ(Ik).

Proof. Let ei(t) = wi(t) − wi(app)(t) be the error term, where wi(app)(t), i = 1, 2, is the approximate solution of the
system (4.2). We can write

ei(t) = wi(t)− wi(app)(t) =

∫ t

0

(
fi(x,W (x))− fi(x,Wapp(x))

)
dx, i = 1, 2.

By using Eq. (4.3) and that 0 < t < 1, we get

|ei(t)| ≤ Li ‖W −Wapp‖∞ = Li max
1≤i≤2

‖wi − wi(app)‖∞.

If L = max{L1, L2}; then

‖ei‖∞ ≤ L ‖ws − ws(app)‖∞, s ∈ {1, 2}. (4.4)

Now, by considering Eq. (4.4) and using Lemma 4.3, we have

‖ei‖∞ ≤ L ‖ws − ws(app)‖∞ = L ‖ws − ws(app)‖L∞[0,1) ≤ ε max
1≤k≤P

‖ws‖Hγ(Ik),

where ε = Lδ(θ)
3
4−γ . �

5. Numerical results

In this section, in order to evaluate the effectiveness of the present method, some examples of two versions of the
Duffing equation are presented. The first two examples are problems of Version 1 and the other two examples are
problems of Version 2. The implementation of the present method for each of these two versions are described in
Section 3. We point out that in each of the references mentioned in the following examples, the proposed methods
were used only to solve one of these versions while the present method is able to solve both. For all computations, a
Matlab 2017a software package is used.
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(c) P = 2, Q = 8

Figure 1. The absolute errors for some different values of P and Q in Example 1.

Example 1. The first example is a problem of Version 1 as [19, 35, 45]v
′′(t) + v′(t) + v(t)v′(t) +

∫ t

0

txv2(x) dx = g(t), 0 < t < 1,

v(0)− v′(0) = 0, v(1)− v′(1) = 0,

(5.1)

where

g(t) =
1

6
t7 − 2

5
t6 − 1

4
t5 +

2

3
t4 +

5

2
t3 − 3t2 − 3t.

The exact solution of problem (5.1) is given by v(t) = −t2 + t + 1. In [45], an iteration method in the reproducing
kernel space proposed to solve this version of the Duffing equation. Also, Geng [19] using an improved variational
iteration method and Saadatmandi and Yeganeh [35] using the sinc-collocation method solved this type of problems.
Here, we applied the present method for solving equation (5.1) with P = 2 and Q = 8. In Table 1, the obtained results
are reported and compared with the numerical results in [19, 35, 45]. Also, the absolute errors for some different values
of P and Q are compared in Figure 1.

Table 1. The numerical results for Example 1.

t Exact v(t)
Absolute error of v(t)

Method of [45] Method of [19] Method of [35] Present method
0.1 1.09 9.47E-6 6.66E-16 8.97E-09 2.22E-16
0.2 1.16 9.78E-6 4.44E-16 2.03E-08 0
0.3 1.21 9.82E-6 4.44E-16 8.03E-08 0
0.4 1.24 9.67E-6 2.22E-16 1.17E-07 2.22E-16
0.5 1.25 9.37E-6 4.44E-16 1.77E-07 0
0.6 1.24 8.98E-6 4.44E-16 4.53E-08 0
0.7 1.21 8.51E-6 4.44E-16 2.01E-07 0
0.8 1.16 7.98E-6 4.44E-16 1.78E-08 0
0.9 1.09 7.40E-6 6.66E-16 3.05E-08 0
1.0 1.00 6.75E-6 4.44E-16 2.00E-08 1.11E-16

Example 2. Another problem of Version 1 is considered as [19, 45]v
′′(t) + v′(t) + v(t)(1 + v′(t)) +

∫ t

0

x2v(x) dx = g(t), 0 < t < 1,

2v(0)− v′(0) = 0, 3v(1) + v′(1) = 0,

(5.2)
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(a) P = 2, Q = 4
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(b) P = 2, Q = 6
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(c) P = 2, Q = 8

Figure 2. The absolute errors for some different values of P and Q in Example 2.

where

g(t) =
1

24(1 + e)2

(
8e2(3t4 + 2t3 + 60t+ 42) + 726et − 132et+1(11 + t2 + 2t)

+ e(15t4 + 32t3 − 228t+ 540)− 66et(11 + 2t2 − 7t)

− 9t4 + 16t3 + 18t+ 204

)
.

For this problem, the exact solution is given by v(t) = 2 − t(3−8e)+11et

2(1+e) . Similar to the previous example, we take

P = 2, Q = 8 and solve problem (5.2) by the present method. The comparisons between the absolute errors obtained
by the present method and the methods in [45] and [19] are shown in Table 2. In Figure 2, the absolute errors for
some different values of P and Q are compared.

Table 2. The numerical results for Example 2.

t Exact v(t)
Absolute error of v(t)

Method of [45] Method of [19] Present method
0.1 0.6173379116 3.37E-05 1.11E-16 3.62E-16
0.2 0.6974925703 3.35E-05 2.22E-16 9.41E-16
0.3 0.7595654498 3.06E-05 2.22E-16 5.32E-16
0.4 0.8016548726 2.59E-05 2.22E-16 2.67E-16
0.5 0.8216591603 2.05E-05 0 6.30E-16
0.6 0.8172555990 1.52E-05 4.44E-16 7.09E-16
0.7 0.7858771928 1.05E-05 2.22E-16 2.84E-16
0.8 0.7246869725 6.78E-06 0 1.25E-16
0.9 0.6305496023 4.17E-06 6.66E-16 2.93E-16
1.0 0.5 2.72E-06 7.77E-16 5.05E-16

Example 3. The following example is considered as a problem of Version 2 [20, 31]:
v′′(t) + v′(t) + t(1− t)v3(t) = g(t), 0 < t < 1,

v(0)− 2

π2
v′(0) = −

∫ 1

0

v(x) dx, v(1) +
1

π2
v′(1) = −

∫ 1

0

xv(x) dx,
(5.3)

where

g(t) = − sin(πt)(π2 + t(t− 1) sin2(πt)) + π cos(πt).
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Figure 3. The absolute errors of v(t) for P = 4, Q = 8 in Example 3.

The exact solution of the problem (5.3) is v(t) = sin(πt). Geng and Cui [20] have solved this version of the Duffing
equation by combining the homotopy perturbation method and the reproducing kernel Hilbert space method. Here,
we solved it using the proposed method, once for P = 2, Q = 8 and once again for P = 4, Q = 8. In Table 3, the
obtained relative errors are compared. Also, in [31] by using Legendre multiwavelets method for solving this problem,
the maximum relative error is obtained 6.64E-07. Figure 3 shows the absolute errors by the present method with
P = 4 and Q = 8.

Table 3. The numerical results for Example 3.

t Exact v(t)
Relative error of v(t)

Method of [20] Present Method
n=100, m=5 P = 2, Q = 8 P = 4, Q = 8

0.01 0.0314107591 7.49E-05 1.91E-05 2.02E-08
0.08 0.2486898872 8.17E-05 3.15E-06 3.29E-09
0.16 0.4817536741 8.11E-05 2.24E-06 2.12E-10
0.32 0.8443279255 8.09E-05 1.80E-06 1.29E-10
0.48 0.9980267284 8.08E-05 1.90E-06 7.04E-10
0.64 0.9048270525 8.03E-05 1.50E-06 8.12E-10
0.80 0.5877852523 7.97E-05 1.33E-06 9.83E-10
0.96 0.1253332336 7.85E-05 2.45E-06 3.58E-10

Example 4. As the last example, we consider the following problem of Version 2 [20]:
v′′(t)− v′(t)− 2v(t) + sin(v(t)) = g(t), 0 < t < 1,

v(0)− 4

3π2
v′(0) = −

∫ 1

0

cos(
πx

2
)v(x) dx, v(1) +

6

π2
v′(1) = −

∫ 1

0

(2x+ 2)v(x) dx,
(5.4)

where

g(t) = sin(sin(πt))− (2 + π2) sin(πt)− π cos(πt).
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The exact solution of the problem (5.4) is v(t) = sin(πt). The problem is solved using the proposed method, once for
P = 3, Q = 6 and once again for P = 6, Q = 6 and the obtained absolute errors are reported in Table 4. We point out
that in [20], the maximum absolute error is 2.0E-4.

Table 4. The numerical results for Example 4.

t Exact v(t)
Absolute error of v(t)

P = 3, Q = 6 P = 6, Q = 6
0.1 0.3090169944 2.69E-04 3.04E-05
0.2 0.5877852523 7.67E-04 1.12E-05
0.3 0.8090169944 1.18E-03 2.94E-05
0.4 0.9510565163 1.29E-03 3.82E-05
0.5 1 1.42E-03 4.83E-05
0.6 0.9510565163 1.42E-03 4.31E-05
0.7 0.8090169944 1.42E-03 3.75E-05
0.8 0.5877852523 1.09E-03 2.03E-05
0.9 0.3090169944 5.81E-04 1.05E-05
1.0 0 8.27E-05 1.20E-05

6. Conclusions

In the present paper, a hybrid functions method based on the combination of Legendre polynomials and Block-pulse
functions were successfully implemented for solving two versions of the Duffing equation: one involving both integral
and non-integral forcing terms with separated boundary conditions and the other involving non-integral forcing terms
with integral boundary conditions. It is noteworthy that in each of the references mentioned in the examples, the
proposed methods have been used only to solve one of the above versions while the present method is able to solve
both. By using this method, these two second-order boundary value problems were reduced to the system of algebraic
equations, which we solved them by the Newton’s method. Also, an upper bound of the error for the proposed method
was obtained. Furthermore, some numerical examples were simulated to show the applicability and effectiveness of
the method. The obtained results of the proposed method were compared with the exact solutions and with the
reported results in the literature. The reported results and comparisons confirm that the obtained numerical solutions
by the present method are in desired agreement with the exact solutions and also, the proposed method gives better
approximations than the previous methods.
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