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Abstract

In this paper, we use a geometric approach based on the concepts of variational principle and moving frames to

obtain the conservation laws related to the one-dimensional nonlinear Klein-Gordon equation. Noether’s First
Theorem guarantees conservation laws, provided that the Lagrangian is invariant under a Lie group action. So, for

calculating conservation laws of the Klein-Gordon equation, we first present a Lagrangian whose Euler-Lagrange

equation is the Klein-Gordon equation, and then according to Gonçalves and Mansfield’s method, we obtain the
space of conservation laws in terms of vectors of invariants and the adjoint representation of a moving frame, for

that Lagrangian, which is invariant under a hyperbolic group action.
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1. Introduction

Partial differential equations arise frequently in the modelling of many nonlinear phenomena, that emerge in many
areas of scientific fields such as fluid dynamics, solid state physics, plasma physics, and mathematical biology. One
of the most prominent equations is the nonlinear Klein-Gordon (NKG) equation with application in the area of
theoretical physics, mathematical physics, and the context of relativistic quantum mechanics. The NKG equation
appears in diverse physical events such as the motion of rigid pendula attached to a stretched wire, dislocations in
crystals, solid state physics, plasma physics, nonlinear optics, and quantum field theory [18].

The one-dimensional nonlinear Klein-Gordon equation is given by

utt − c2uxx + g(u) = 0, (1.1)

where c is a known constant, u = u(x, t) represents the wave displacement at position x and time t and g(u) is the
nonlinear force. When g(u) = ku + γu2 or g(u) = ku + γu3, where k and γ are known constants, equation (1.1) is
called the nonlinear Klein-Gordon equation with quadratic or cubic nonlinearity, respectively. In special case, if the
nonlinear Klein-Gordon equation is utt − c2uxx + V ′(u) = 0, the function V ′(u) is a nonlinear function of u, usually
chosen as the derivative of the potential energy V (u).

Several methods have been presented to solve the Klein-Gordon type equations, such as the auxiliary equation
method [17], the decomposition method [19], the numerical method [1, 2, 7, 8, 13–15], and the variational iteration
method [16].

The vast importance of the problem of finding conservation laws in a large number of applications in physics and
mechanics is beyond any doubt. The existence of an adequate number of conservation laws leads to the complete
integrability of the dynamical system, which is one of the most appealing questions for researchers. Conservation laws
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describe physically conserved quantities such as momentum, angular momentum, mass, and energy. In fact, in the
study of differential equations, conservation laws have many considerable uses. They are important for establishing
the existence and uniqueness of solutions. Also, they provide an essential starting point for finding potential variables
and play a fundamental role in the development of numerical methods. In addition, the structure of conservation laws
is coordinate-independent because all point transformations and contact transformations map a conservation law to a
conservation law.

There are various methods for finding conservation laws of differential equations. In this paper, we are going to
find the conservation laws of the equation

utt − c2uxx + ku+ γu3 = 0, (1.2)

by applying Noether’s Theorem and moving frames. In 1918, Emmy Noether in his pivotal paper [11], proved the
substantial result that for systems arising from a variational principle, every conservation law of the system comes
from a Lie group action that leaves the Lagrangian invariant (see [12], Theorem 4.29.).

Recently in [4, 6, 10], Mansfield and Gonçalves considered diverse Lagrangians, which are invariant under a Lie
group action, where independent variables are invariant. They presented the mathematical structure behind both the
Euler-Lagrange equations and the set of conservation laws, and they proved that Noether’s conservation laws can be
displayed as the product of adjoint representation of a right moving frame and vectors that come from invariants.
These results were presented in [4] for the standard SE(2) and SE(3) actions, and in [6] for all three inequivalent
SL(2) actions in the complex plane. In a recent work [5], Mansfield and Gonçalves considered invariant Lagrangians
under a Lie group action, where independent variables are no longer invariant.

In this paper, first, we give a Lagrangian that its Euler-Lagrange equation is the Klein-Gordon equation, then
according to [5], we calculate the conservation laws of the Euler-Lagrange equation in which the two independent
variables are not invariant.

In section 2, we will briefly give some background on moving frames, differential invariants of a group action,
invariant differentiation operators, and invariant forms. Throughout section 2, we will use the group action of a
hyperbolic group on the space (x, t, u(x, t)), that this group is a symmetry group of the nonlinear Klein-Gordon
equation (1.2).

In section 3, we concentrate on the invariant calculus of variations and find the adjoint representation associated
with the hyperbolic group action. Then, we end this section with the calculation of Noether’s conservation laws
associated with equation (1.2), in terms of vectors of invariants, the adjoint representation of the moving frame, and
a matrix which represents the group action on the 1-forms.

2. Moving frames, differential invariants of a group action and invariant forms

In this section, we present some vital concepts regarding moving frames, differential invariants of a group action,
invariant differential operators, and invariant forms as formulated by Fels and Olver [3], Mansfield [10], and Kogan
and Olver [9].

The nonlinear Klein-Gordon equation (1.2) is the Euler-Lagrange equation for the variational problem

Φ[u] =

∫∫
1

4
(−2u2

t + 2c2u2
x + 2ku2 + γu4)dxdt, (2.1)

in other words, the equation (1.2) is the Euler-Lagrange equation of the Lagrangian

L =
1

4
(−2u2

t + 2c2u2
x + 2ku2 + γu4).

So, variational symmetry (hyperbolic) group G of the functional Φ[u] with infinitesimal generators

−c∂x + ∂t, c∂x + ∂t, c2t∂x + x∂t, (2.2)

is a symmetry group of the nonlinear Klein-Gordon equation (1.2) (see [12], Theorem 4.14.).

Definition 2.1. A group action of G on M is a map

G×M →M, (g, z) → z̃ = g ·z,
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which satisfies either g ·(h·z) = (gh)·z, called a left action, or g ·(h·z) = (hg)·z, called a right action.

The action of the Lie group G associated to vector field (2.2) on a 2-dimensional manifold M with coordinates
(x, t), is given as follows

x̃ = −cα+ cβ +
1

2
(ecθx+ e−cθx+ cecθt− ce−cθt) = −cα+ cβ + x cosh(cθ) + ct sinh(cθ),

t̃ =
1

2c
(2cα+ 2cβ + ecθx− e−cθx+ cecθt+ ce−cθt) = α+ β +

x

c
. sinh(cθ) + t cosh(cθ), (2.3)

where α, β, and θ are constants that parametrize the group action.

Definition 2.2. We say, two smooth surfaces K and O contained in Rn, such that, dim(K) = α, dim(O) = β,
0 ≤ α, β ≤ n, α+ β ≥ n, intersect transversally if for every x ∈ K∩O, the tangent spaces TxK and TxO, as subspaces
of TxRn, satisfy

TxK + TxO = TxRn.

Consider a Lie group G acting smootlhy on M such that the action is free and regular in some domain U ⊂ M .
This declares that
- the group orbits have the same dimension of the group G and foliate U ,
- there is a surface K ⊂ U which intersects the group orbits transversally at a single point, known as cross section,
- if O(z) represents the orbit through z, then the element g ∈ G taking z ∈ U to {k} = O(z) ∩ K is unique.

Under these conditions, we define a right moving frame as the map ρ : U → G which sends z ∈ U to the unique
element g = ρ(z) ∈ G which satisfies ρ(z)·z = k. To obtain the right moving frame, which sends z to k, we define the
cross section K as the locus of the set of equations ψj(z) = 0, for j = 1, · · · , r, where r is the dimension of G. Then,
solving the set of equations

ψj(z̃) = ψj(g.z) = 0, j = 1, · · · , r,

known as the normalization equations, for the r parameters describing G yields the frame in parametric form.
We now consider the hyperbolic group action G associated to the transformation (2.3) on the space (x, t, u(x, t)),

where u is invariant.

Example 2.3. Consider the group action G on the space (x, t, u(x, t)) as follows(
x̃

t̃

)
=

 cosh(cθ) c sinh(cθ)

1

c
sinh(cθ) cosh(cθ)

( x

t

)
+

(
−cα+ cβ

α+ β

)
, ũ = u , (2.4)

where α, β, and θ are constants that parametrize the group action. The prolonged action on ux and ut is given
explicitly by

g.ux = ũx = D̃xũ, g ·ut = ũt = D̃tũ.

The transformed total differentiation operators D̃i are defined by

D̃i =
d

dx̃i
=

p∑
k=1

(
(dx̃/dx)

−T
)
ik
Dk,

where dx̃/dx is the Jacobian matrix. So,

ũx = cosh(cθ)ux −
1

c
sinh(cθ)ut, ũt = −c sinh(cθ)ux + cosh(cθ)ut.

If we take M to be the space with coordinates (x, t, u, ux, ut, uxx, uxt, utt, · · · ), then the action is locally free near
the identity of hyperbolic group G and regular. So, if we take the normalization equations to be x̃ = 0, t̃ = 0 and
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ũx = 0, we obtain

α = − 1

2c
.
(ct− x)(cux − ut)√
−c2u2

x + u2
t

, β =
1

2c
.
cxux + c2tux + xut + ctut√

−c2u2
x + u2

t

, θ =
1

c
. ln

(√
−c2u2

x + u2
t

cux − ut

)
, (2.5)

as the frame in parametric form.

Theorem 2.4. Let ρ(z) be a right moving frame. Then the quantity I(z) = ρ(z)·z is an invariant of the group action.
(See [3], Theorem 4.5. in page 11)

Consider z = (z1, · · · , zn) ∈M , and let the normalization equations z̃i = ci for i = 1, · · · , r, then

ρ(z)· z = (c1, · · · , cr, I(zr+1), · · · , I(zn)),

where

I(zk) = g · zk|g=ρ(z), k = r + 1, · · · , n.

Definition 2.5. For any prolonged action in the jet space M = Jn(X × U), the invariantized jet coordinates are
denoted as

J i = I(xi) = x̃i
∣∣
g=ρ(z) , Iαk = I(uαk ) = ũαk

∣∣
g=ρ(z) .

These are also known as the normalized differential invariants. According to Replacement Theorem [10], any
invariant is a function of the I(zk). Particularly, the set {J i, Iαk } is a complete set of differential invariants for a
prolonged action.

Now, we turn our attention to considering the invariants for the Example 2.3.

Example 2.3 (Continuing). The normalized differential invariants up to order two are as follows

g ·z = (x̃, t̃, ũ, ũx, ũt, ũxx, ũxt, ũtt)
∣∣
g=ρ(z)

= (Jx, J t, Iu, Iu1 , I
u
2 , I

u
11, I

u
12, I

u
22)

=
(

0, 0, u, 0,−
√
−c2u2

x + u2
t ,−

uxxu
2
t − 2uxtuxut + uttu

2
x

c2u2
x − u2

t

,

− −c2uxxuxut + c2uxtu
2
x + uxtu

2
t − uttuxut

c2u2
x − u2

t

,−c
4uxxu

2
x − 2c2uxtuxut + uttu

2
t

c2u2
x − u2

t

)
.

The first, second and fourth components correspond to the normalization equations and are known as the phantom
invariants.

Definition 2.6. The invariant differential operators denoted as

Di = D̃i

∣∣
g=ρ(z) , D̃i =

d

dx̃i
=

p∑
k=1

((
dx̃/dx

)−T)
ik

Dk,

where these invariant differentiation operators map differential invariants to differential invariants.

We know that ∂uαk/∂xi = uαki, although the same is not true for their invariantized version, it means that in general

DiIαk 6= Iαki.

Definition 2.7. Invariant differentiation of the jet coordinates, J i and Iαk , are defined respectively, as

DjJ i = δij +Nij , DjIαK = IαKj +Mα
Kj ,

where δij is the Kronecker delta, and Nij and Mα
Kj are the correction terms. For more information on correction

terms see page 133 in [10].
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If we consider the two generating invariants IαJ and IαL , and let JK = LM so that IαJK = IαLM . This implies that

DKIαJ −DMIαL = Mα
JK −Mα

LM .

These equations are called syzygies or differential identities. For more information on syzygies, see section 5 in [10].
To obtain the correction terms, we define the following notion of infinitesimals of a prolonged group action (for more
details see [10]). Let G be a group parametrized by a1, · · · , ar, where r = dim(G), in a neighbourhood of the identity
element. The infinitesimals of the prolonged group action with respect to these parameters are

ξji =
∂x̃j
∂ai
|g=e , φαK,j =

∂ũαK
∂aj

|g=e .

Also, Let the normalisation equations be {ψλ(z) = 0, λ = 1, · · · , r} and suppose the n variables actually occurring
in the ψλ(z) are ζ1, · · · , ζn such that m of these are independent variables and n−m of them are dependent variables
and their derivatives. Let T denote the invariant p× n total derivative matrix

Tij = I

(
D

Dxi
ζj

)
,

and define φ to be the r × n matrix as follows,

φij =

(
∂(g ·ζj)
∂gi

|g=e
)

(I),

and J to be the n× r matrix

Jij =
∂ψj(I)

∂I(ζi)
,

that is, transpose of the Jacobian matrix of the normalisation equations ψ1, · · · , ψr, with invariantised arguments.
Using the above defined matrices, the correction terms can be obtained as follows, which has been proved in [10].

Theorem 2.8. The formulae for the correction terms are

Nij =

r∑
l=1

Kjlξ
i
l (I), Mα

Kj =

r∑
l=1

Kjlφ
α
K,l(I),

where l is the index for the group parameters, r = dim(G), and the p× r correction matrix K, is given by

K = −TJ(φJ)−1.

Now, we calculate the invariant differentiation of the jet coordinates and the syzygies of the transformation (2.4)
in Example 2.3.

Example 2.3 (Continuing). If we set u = u(x, t, τ) and τ̃ = τ and take the normalization equations as before, we
obtain

ũτ
∣∣
g=ρ(z) = Iu3 = uτ ,

ũt
∣∣
g=ρ(z) = Iu2 = −

√
−c2u2

x + u2
t ,

ũxx
∣∣
g=ρ(z) = Iu11 = −uxxu

2
t − 2uxtuxut + uttu

2
x

c2u2
x − u2

t

,

ũxt
∣∣
g=ρ(z) = Iu12 = −−c

2uxxuxut + c2uxtu
2
x + uxtu

2
t − uttuxut

c2u2
x − u2

t

,

ũtt
∣∣
g=ρ(z) = Iu22 = −c

4uxxu
2
x − 2c2uxtuxut + uttu

2
t

c2u2
x − u2

t

.
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According to Theorem 2.8 we obtain the Invariant differentiation of the jet coordinates as follows

DxIu2 = Iu12, DtIu2 = Iu22, DτIu2 = Iu23,

DxIu11 = Iu111 −
2Iu11I

u
12

Iu2
, DtIu11 = Iu112 −

2(Iu12)
2

Iu2
, DτIu11 = Iu113 −

2Iu12I
u
13

Iu2
,

DxIu22 = Iu122 −
2c2Iu11I

u
12

Iu2
, DtIu22 = Iu222 −

2c2(Iu12)
2

Iu2
, DτIu22 = Iu223 −

2c2Iu12I
u
13

Iu2
,

DxIu12=I
u
112−

Iu11

Iu2
(c2Iu11+I

u
22), DtIu12=I

u
122−

Iu12

Iu2
(c2Iu11+I

u
22), DτIu12=I

u
123−

Iu13

Iu2
(c2Iu11+I

u
22).

We know that there are two ways to reach Iu112 and since both ways must be equal, we get the following syzygy
between Iu and Iu11:

D2I
u
(

(D1)
2D2I

u −D2I
u
11

)
+ (Iu11)

2
+ Iu11(D2)2Iu − 2(D1D2I

u)
2

= 0.

Similarly, there are two possibilities to obtain Iu113, so we get a syzygy between Iu3 and Iu11 and the syzygy is:

D3I
u
11 =

(
(D1)

2 − 2Iu12D1

Iu2
+
Iu11D2

Iu2

)
Iu3 , (2.6)

and likewise, the syzygy between Iu3 and Iu22 is:

D3I
u
22 =

(
(D2)

2 − c2Iu12D1

Iu2

)
Iu3 . (2.7)

Finally, there are two syzygies between Iu3 and Iu12, which are as follows:

D3I
u
12 =

(
D1D2 −

Iu22D1

Iu2

)
Iu3 , (2.8)

D3I
u
12 =

(
D2D1 +

Iu12D2

Iu2
− c2Iu11D1

Iu2
− Iu22D1

Iu2

)
Iu3 . (2.9)

From Equations (2.8) and (2.9), we can verify that the invariant operators Dx and Dt do not commute. In general,
the invariant total differentiation operators do not commute. In fact, we have the following theorem.

Theorem 2.9. [3] Denote the invariantized derivatives of the infinitesimals ξkl , for k, i = 1, · · · , p and l = 1, · · · , r,
by

Ξkli = D̃iξ
k
l (z̃)

∣∣
g=ρ(z) ,

then the commutators are given by

[Di,Dj ] =

p∑
k=1

AkijDk, Akij =

r∑
l=1

KjlΞ
k
li −KilΞ

k
lj .

We now define invariant one-forms that will be required in the next section.

Definition 2.10. The invariant one-forms are denoted as

I(dxi) = dx̃i
∣∣
g=ρ(z) =

( p∑
j=1

Dj(x̃i)dxj

) ∣∣
g=ρ(z) .

As for differential invariants, the invariant total differentiation operators send invariant differential forms to invariant
differential forms.
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Remark 2.11. Let the invariant differential operator Di be associated to the vector field Vi as follows

Di = f1(z)D1 + · · ·+ fp(z)Dp ↔ Vi = (f1(z), · · · , fp(z)).

Then Di(ω), denote as the Lie derivative

Di(ω) = d(Vi | ω) + Vi | d(ω),

where d is the usual exterior derivative, and | is the interior product of a vector field with a form.

Theorem 2.12. [5] Consider the set of invariant total differentiation operators, {Di}, and the set of invariant one-
forms, {I(dxj)}. So if

Di(I(dxj)) =

p∑
k=1

BkijI(dxk),

then Bjki = Aijk.

Finally, in the end of this section, from the above theorem we obtain the Lie derivatives of I(dxj) with respect to
Di for the hyperbolic group action on (x, t, τ), that has been given in Example 2.3.

Example 2.3 (Continuing). Recall that g ∈ G ( the hyperbolic group) acts on (x, t, τ), where t is an invariant
dummy independent variable introduced to effect variation. So the Lie derivatives of I(dxj) with respect to Di are as
shown in Table 1.

Table 1. Lie derivatives of the I(dxj) with respect to the Di

Lie derivative I(dx) I(dt) I(dτ)

Dx c2.
Iu11
Iu2
I(dt) − I

u
12

Iu2
I(dt)− Iu13

Iu2
I(dτ) 0

Dt c2
(
− Iu11

Iu2
I(dx)− Iu13

Iu2
I(dτ)

) Iu12
Iu2
I(dx) 0

Dτ c2.
Iu13
Iu2
I(dt)

Iu13
Iu2
I(dx) 0

3. Invariant calculus of variations and structure of Noether’s conservation laws

We assume Lagrangians to be smooth functions of x = (x1, · · · , xp) , u = (u1, · · · , uq) and finitely many derivatives
of uα and denote them as Φ̄[u] =

∫
L̄[u] dx, where dx = dx1 · · · dxp. Furthermore, suppose these are invariant under

some group action and let the κj , for j = 1, · · · , N , be the generating differential invariants of the group action. We
can then rewrite Φ̄(u) as Φ[κ] =

∫
L[κ] I(dx), where I(dx) = I(dx1) · · · I(dxp) is the invariant volume form. According

to [9], recall that if x→ (x,u(x)) extremizes the functional Φ̄(u), then for a small perturbation of u

0 =
d

dε
|ε=0 Φ̄[u + εv] =

∫ q∑
α=1

[
Eα(L̄)vα +

p∑
i=1

d

dxi

( ∂L̄
∂uαi

vα + · · ·
)]
dx,

where

Eα =
∑
K

(−1)
K D|K|

Dxk11 Dx
k2
2 · · ·Dx

kp
p

∂

∂uαK
,

is the Euler operator with respect to the dependent variable uα, and symbolically,

d

dε

∣∣∣∣ε=0Φ̄[u + εv] =
d

dτ

∣∣
uτ=vΦ̄[u] .
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According to [5], we have

0 = Dt
∫
L[κ] I(dx) = Dp+1

∫
L[κ] I(dx)

=

∫ (∑
α

Eα(L)Iατ I(dx) +

p∑
i=1

Di
[ p+1∑
j=1

FijI(dx1) · · · Î(dxj) · · · I(dxp+1)
])
,

where Eα(L) are the invariantized Euler-Lagrange equations, Fij depends on IαK,p+1 and IαJ with K and J multi-indices
of differentiation with respect to xi, for i = 1, · · · , p, and

I(dx1) · · · Î(dxj) · · · I(dxp+1) = I(dx1) · · · I(dxj−1)I(dxj+1) · · · I(dxp+1).

Theorem 3.1. [5] The process of calculating the invariantized Euler-Lagrange equations produces boundary terms∫ p∑
i=1

Di
(p+1∑
j=1

FijI(dx1) · · · Î(dxj) · · · I(dxp+1)
)
,

that can be written as∫ p∑
i=1

d
((
−1
)i−1

[∑
K,α

IαK,τC
α
K,i

]
I(dx1) · · · Î(dxj) · · · I(dxp+1)

)
,

where K is a multi-index of differentiation with respect to xi, for i = 1, · · · , p, and CαK,i are functions of IαJ , with J a
multi-index of differentiation with respect to xi.

Now, in this section we consider the variational problem (2.1), that its Euler-Lagrange equation is the nonlinear
Klein-Gordon equation (1.2).

Example 3.2. Consider the variational problem

Φ[u] =

∫∫
1

4

(
− 2u2

t + 2c2u2
x + 2ku2 + γu4

)
dxdt, (3.1)

which is invariant under the action (2.4). To find the invariantized Euler-Lagrange equation, introduce a dummy
invariant independent variable τ to effect the variation, and set u = u(x, t, τ), therefore ũτ

∣∣
g=ρ(z) = Iu3 = uτ . Rewriting

the above variational problem in terms of the invariants of the group action yields∫∫
1

4

(
− 2(Iu2 )2 + 2c2(Iu1 )2 + 2k(Iu)2 + γ(Iu)4

)
I(dx)I(dt). (3.2)

To obtain the invariantized Euler-Lagrange equation and boundary terms, after differentiating (3.2) under the
integral sign we obtain

Dτ
∫∫

1

4

(
− 2(Iu2 )2 + 2c2(Iu1 )2 + 2k(Iu)2 + γ(Iu)4

)
I(dx)I(dt)

=

∫∫ [ (
−Iu2 .Dτ (Iu2 ) + c2Iu1 .Dτ (Iu1 ) + kIu.Dτ (Iu) + γ(Iu)

3
.Dτ (Iu)

)
I(dx)I(dt)

+
1

4

(
−2(Iu2 )

2
+ 2c2(Iu1 )

2
+ 2k(Iu)

2
+ γ(Iu)

4
)
Dτ (I(dx)I(dt))

]
.

Using Table 1 we see that Dτ (I(dx)I(dt)) = 0. Then substituting DtIu11 by (2.6), DtIu22 by (2.7), DtIu12 by (2.8),
and substituting Iu1 equal to zero in the second integral, and performing integration by parts yields∫∫ (

Iu22 − c2Iu11 + kIu + γ(Iu)
3
)
I(dx)I(dt) +

∫∫
Dt
(
−Iu2 Iu3 I(dx)I(dt)

)
.

Thus, we obtain the invariantized Euler-Lagrange equation

Eu(L) = Iu22 − c2Iu11 + kIu + γ(Iu)3 = utt − c2uxx + ku+ γu3.
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Therefore, according to the above theorem, the boundary terms can be written as∫∫
d(Iu2 I

u
3 I(dx)). (3.3)

Theorem 3.3. [5] Let
∫
L(k1, k2, · · · ) I(dx) be invariant under G×M →M , where M = Jn(X,U), with generating

invariants κj, for j = 1, · · · .N . Introduce a dummy invariant variable t to effect the variation and then integration
by parts yields

Dt
∫
L(k1, k2, · · · ) I(dx) =

∫ [∑
α

Eα(L)Iαt I(dx) +

p∑
k=1

d
((
−1
)k−1

(∑
J,α

IαJtC
α
J,k

)
I(dx1) · · · Î(dxk) · · · I(dxp+1)

)]
,

where this defines the vectors Cα
k = (CαJ,k). Recall that Eα(L) are the invariantized Euler- Lagrange equations and

IαJt = I(uαJt), where J is a multi-index of differentiation with respect to the variables xi, for i = 1, · · · , p. Let
(a1, · · · , ar) be the coordinates of G near the identity e, and vi, for i = 1, · · · , r, the associated infinitesimal vector
fields. Furthermore, let Ad(g) be the Adjoint representation of G with respect to these vector fields. For each dependent
variable, define the matrices of characteristics to be,

Qα(z̃) = (D̃K(Qαi )), α = 1, · · · , q,

where K is a multi-index of differentiation with respect to the xk, and

Qαi = φαi −
p∑
k=1

ξki u
α
k =

∂ũα

∂ai
|g=e −

p∑
k=1

∂x̃k
∂ai
|g=e uαk ,

are the components of the q-tuple Qi known as the characteristic of the vector field vi. Let Qα(J, I), for α = 1, · · · , q,
be the invariantization of the above matrices. Then, the r conservation laws obtained via Noether’s Theorem can be
written in the form,

d(Ad(ρ)−1(υ1, · · · , υp)MJ dp−1x̂) = 0 ,

where

υk =
∑
α

(−1)
k−1

(Qα(J, I)Cα
k + L(Ξ(J, I))k),

are the vectors of invariants, with (Ξ(J, I))k the kth column of Ξ(J, I), MJ is the matrix of first minors of the Jacobian

matrix evaluated at the frame, J = dx̃/dx
∣∣
g=ρ(z) , and

dp−1x̂ =


d̂x1dx2 · · · dxp
dx1d̂x2dx3 · · · dxp

...

dx1 · · · dxp−1d̂xp

 =


dx2dx3 · · · dxp
dx1dx3 · · · dxp

...

dx1dx2 · · · dxp−1

 .

Lemma 3.4. The inverse of the Adjoint representation of the hyperbolic group G with respect to its generating vector
fields evaluated at the frame (2.5) is

Ad(ρ(z))−1 =



cux − ut√
−c2u2

x + u2
t

0 0

0

√
−c2u2

x + u2
t

cux − ut
0

−1

2

(ct− x)(cux − ut)√
−c2u2

x + u2
t

1

2

(x+ ct)
√
−c2u2

x + u2
t

cux − ut
1


. (3.4)
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Proof. Consider the action (2.4) and let it act on the infinitesimal vector fields generating the hyperbolic group G,

v1 = −c∂x + ∂t, v2 = c∂x + ∂t, v3 = c2t∂x + x∂t,

as follow

g.
(
α′(−c∂x + ∂t) + β′(c∂x + ∂t) + γ′(c2t∂x + x∂t)

)
= α′(−c∂x̃ + ∂t̃) + β′(c∂x̃ + ∂t̃) + γ′(c2t̃∂x̃ + x̃∂t̃)

= α′(−c cosh(cθ )∂x + sinh(cθ )∂t − c sinh(cθ)∂x + cosh(cθ)∂t)

+ β′(c cosh(cθ )∂x − sinh(cθ )∂t − c sinh(cθ)∂x + cosh(cθ)∂t)

+ γ′
[
c2(α+ β +

x

c
sinh(cθ ) + t cosh(cθ ))(cosh(cθ )∂x −

1

c
sinh(cθ )∂t)

+ (−cα+ cβ + x cosh(cθ ) + ct sinh(cθ ))(−c sinh(cθ )∂x + cosh(cθ )∂t)
]

= α′[(cosh(cθ ) + sinh(cθ))(−c∂x + ∂t)]

+ β′[(cosh(cθ )− sinh(cθ))(c∂x + ∂t)]

+ γ′
[
− cα

(
cosh(cθ) + sinh(cθ)

)
(−c∂x+ ∂t)

+ cβ
(

cosh(cθ)− sinh(cθ)
)
(c∂x+ ∂t) + (c2t∂x+ x∂t)

]
=
(
α′ β′ γ′

)
cosh(cθ ) + sinh(cθ ) 0 0

0 cosh(cθ )− sinh(cθ ) 0

−cα (cosh(cθ ) + sinh(cθ )) cβ (cosh(cθ )− sinh(cθ )) 1

×

−c∂x + ∂t

c∂x + ∂t

c2t∂x + x∂t

 ,

where the above 3 × 3 matrix, Ad(g), is the Adjoint representation of G with respect to its generating infinitesimal
vector fields. So Ad(g)−1 is

Ad(g)−1 =


cosh(cθ )− sinh(cθ ) 0 0

0 cosh(cθ ) + sinh(cθ ) 0

cα −cβ 1

 .

Now evaluating Ad(g)−1 at the frame (2.5), we obtain

Ad(ρ(z))−1 =



cux−ut√
−c2u2

x+u2
t

0
0
0√

−c2u2
x+u2

t

cux−ut
0

− 1
2

(ct−x)(cux−ut)√
−c2u2

x+u2
t

1
2

(x+ct)
√
−c2u2

x+u2
t

cux−ut
1


.

�

We now calculate the Noether’s conservation laws of Euler-Lagrange equations for the variational problem (3.1),
namely, the nonlinear Klein-Gordon equation (1.2).

Theorem 3.5. The three Noether’s conservation laws of Euler-Lagrange equations for the variational problem∫∫
1

4

(
− 2u2

t + 2c2u2
x + 2ku2 + γu4

)
dxdt,
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are

d





cux − ut√
−c2u2

x + u2
t

0 0

0

√
−c2u2

x + u2
t

cux − ut
0

−1

2

(ct− x)(cux − ut)√
−c2u2

x + u2
t

1

2

(x+ ct)
√
−c2u2

x + u2
t

cux − ut
1



×


1

4

(
2c(Iu2 )

2 − 2ck(Iu)
2 − cγ(Iu)

4) 1

4

(
−2(Iu2 )

2 − 2k(Iu)
2 − γ(Iu)

4)
1

4

(
−2c(Iu2 )

2
+ 2ck(Iu)

2
+ cγ(Iu)

4) 1

4

(
−2(Iu2 )

2 − 2k(Iu)
2 − γ(Iu)

4)
0 0



×


−ut√

−c2u2
x + u2

t

−ux√
−c2u2

x + u2
t

−c2ux√
−c2u2

x + u2
t

−ut√
−c2u2

x + u2
t



dt

dx


 = 0.

Proof. According to Theorem 3.3 the elements of Cui correspond to the coefficients of the IαJτ in (3.3), as follows:

Cu1 =


0

0

0

 , Cu2 =


−Iu2

0

0

 ,
and the (Ξ(J, I))i, for i = 1, 2, are

(Ξ(J, I))1 =


ξx

α −c

β c

θ 0

, (Ξ(J, I))2 =


ξt

α 1

β 1

θ 0

.
Since Iu1 = 0, the invariantized matrix of characteristics is,

Qu(J, I) =


Qu Dx(Qu) Dt(Q

u)

α −Iu2 cIu11 − Iu12 cIu12 − Iu22

β −Iu2 −cIu11 − Iu12 −cIu12 − Iu22

θ 0 −Iu2 0

,
thus, the vectors of invariants are

υ1 =


1

4

(
2c(Iu2 )

2 − 2ck(Iu)
2 − cγ(Iu)

4)
1

4

(
−2c(Iu2 )

2
+ 2ck(Iu)

2
+ cγ(Iu)

4)
0

 , υ2 =


1

4

(
−2(Iu2 )

2 − 2k(Iu)
2 − γ(Iu)

4)
1

4

(
−2(Iu2 )

2 − 2k(Iu)
2 − γ(Iu)

4)
0

 ,
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and according to Lemma 3.4 the inverse of the Adjoint representation Ad(ρ)−1 is as (3.4). Finally, the Jacobian matrix
J is

J =

 ∂x̃

∂x

∣∣
g=ρ(z)

∂x̃

∂t

∣∣
g=ρ(z)

∂t̃

∂x

∣∣
g=ρ(z)

∂t̃

∂t

∣∣
g=ρ(z)



=


cosh(cθ) c. sinh(cθ)

1

c
. sinh(cθ) cosh(cθ)



=


−ut√

−c2u2
x + u2

t

−c2ux√
−c2u2

x + u2
t

−ux√
−c2u2

x + u2
t

−ut√
−c2u2

x + u2
t


and its matrix of first minors, MJ , is

MJ =


−ut√

−c2u2
x + u2

t

−ux√
−c2u2

x + u2
t

−c2ux√
−c2u2

x + u2
t

−ut√
−c2u2

x + u2
t

 .
Thus, the conservation laws are

d
(
Ad(ρ)

−1
.
[
υ1 υ2

]
.MJ .d

1x̂
)

= 0,

where

d1x̂ =

 dt

dx

 .
�

4. Concluding Remarks

We see that the three Noether’s conservation laws of the nonlinear Klein-Gordon equation (1.2) are in terms of
vectors of invariants, the adjoint representation of the moving frame and a matrix which represents the group action
on the 1-forms. forms. Also, we notice that since equations (2.8) and (2.9) are equivalent, for calculation of boundary
terms if we substitute DτIu12 by equation (2.9) instead of equation (2.8), or we use a combination of the two; in any
case, the conservation laws are equivalent.
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