- [1] S. Abbasbandy, M. S. Hashemi, and C. S. Liu, The Lie-group shooting method for solving the Bratu equation, Commun. Nonlinear Sci. Numer. Simul., 16(11) (2011), 4238–4249.
- [2] W. M. Abd-Elhameed, New spectral solutions for high odd-order boundary value problems via generalized Jacobi polynomials, Bull. Malays. Math. Sci. Soc., 40(4) (2017), 1393–1412.
- [3] W. M. Abd-Elhameed and A. M. Alkenedri, Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials generalizing third-and fourth-kinds of Chebyshev polynomials, CMES Comput. Model. Eng. Sci., 126(3) (2021), 955–989.
- [4] W. M. Abd-Elhameed, E. H. Doha, and Y. H. Youssri, New spectral second kind Chebyshev wavelets algorithm for solving linear and nonlinear second-order differential equations involving singular and Bratu type equations, Abst. Appl. Anal. (2013), Article ID 715756.
- [5] W. M. Abd-Elhameed and Y. H. Youssri, A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: spectral solutions of fractional differential equations, Entropy, 18(10) (2016), 345.
- [6] W. M. Abd-Elhameed and Y. H. Youssri, Generalized Lucas polynomial sequence approach for fractional differ- ential equations, Nonlinear Dyn., 89 (2017), 1341–1355.
- [7] W. M. Abd-Elhameed and Y. H. Youssri, Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations, Comput. Appl. Math.,37 (2018), 2897–2921.
- [8] W. M. Abd-Elhameed and Y. H. Youssri, Sixth-kind Chebyshev spectral approach for solving fractional differential equations, Int. J. Nonlinear Sci. Numer. Simul., 20(2) (2019), 191–203.
- [9] W. M. Abd-Elhameed, Y. H. Youssri, and E. H. Doha, A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations, Math. Sci., 9(2) (2015), 93–102.
- [10] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, volume 55 (1964), US Government printing office.
- [11] M. Abukhaled, S. Khuri, and A. Sayfy, Spline-based numerical treatments of Bratu-type equations, Palestine J. Math., 1 (2012), 63–70.
- [12] E. A. Al-Said,The use of cubic splines in the numerical solution of a system of second-order boundary value problems, Comput. Math. Appl., 42(6-7) (2001), 861–869.
- [13] I. Ali, S. Haq, K. S. Nisar, and D. Baleanu, An efficient numerical scheme based on Lucas polynomials for the study of multidimensional Burgers-type equations, Adv. Difference Equ. 1 (2021), 1–24.
- [14] N. Alonso III and K. L. Bowers, An alternating-direction Sinc–Galerkin method for elliptic problems, J. Complex- ity, 25(3) (2009), 237–252.
- [15] S. Balaji and G. Hariharan, An efficient operational matrix method for the numerical solutions of the fractional Bagley–Torvik equation using wavelets, J. Math. Chem., 57 (8) (2019),1885–1901.
- [16] K. E. Bisshopp and D. C. Drucker, Large deflection of cantilever beams, Quart. Appl. Math., 3 (3) (1945), 272–275.
- [17] J. P. Boyd, One-point pseudospectral collocation for the one-dimensional Bratu equation, Appl. Math. Comp., 217(12) (2011), 5553–5565.
- [18] H. Caglar, N. Caglar, M. Ozer, A. Valarıstos, and A. N. Anagnostopoulos, B-spline method for solving Bratu’s problem, Int.J.Comput. Math., 87(8) (2010), 1885–1891.
- [19] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics. Springer-Verlag, (1988).
- [20] E. Deeba, S. A. Khuri, and S. Xie, An algorithm for solving boundary value problems, J. Comput. Phys., 159(2) (2000), 125–138.
- [21] E. H. Doha, W. M. Abd-Elhameed, and A. H. Bhrawy, New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials, Collect. Math., 64(3) (2013), 373–394.
- [22] E. H. Doha, W. M. Abd-Elhameed, and Y. H. Youssri, Efficient spectral-Petrov–Galerkin methods for the in- tegrated forms of third-and fifth-order elliptic differential equations using general parameters generalized Jacobi polynomials, Appl. Math. Comp., 218(15) (2012), 7727–7740.
- [23] E. H. Doha, W. M. Abd-Elhameed, and Y. H. Youssri, Fully Legendre spectral Galerkin algorithm for solving linear one-dimensional telegraph type equation, Int. J. Comput. Methods, 16 (2019), Article ID 1850118.
- [24] E. H. Doha, A. H. Bhrawy, D. Baleanu, and R. M. Hafez,Efficient Jacobi-Gauss collocation method for solving initial value problems of Bratu type, Comput. Math. Math. Phys., 53(9) (2013), 1292–1302.
- [25] W. Glabisz, The use of Walsh-wavelet packets in linear boundary value problems, Comps. Strs.,82(2-3) (2004), 131–141.
- [26] S. Haq and I. Ali, Approximate solution of two-dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials, Eng. Comput. (2021), DOI:10.1007/s00366-021-01327-5.
- [27] S. Hichar, A. Guerfi, S. Douis, and M. T. Meftah, Application of nonlinear Bratu’s equation in two and three dimensions to electrostatics, Rep. Math. Phys., 76(3) (2015), 283–290.
- [28] R. Jiwari, S. Pandit, and R. C. Mittal, Numerical simulation of two-dimensional sine-Gordon solitons by differ- ential quadrature method, Comput. Phys. Commun.,183(3) (2012), 600–616.
- [29] R. Jiwari, Barycentric rational interpolation and local radial basis functions based numerical algorithms for mul- tidimensional sine-Gordon equation, Numer. Methods Partial Differential Equations,37(3) (2021), 1965–1992.
- [30] H. H. Keller and E. S. Holdredge, Radiation heat transfer for annular fins of trapezoidal profile, J. Heat Transf., 92(1) (1970), 113–116.
- [31] A. M. M. Khodier and A. Y. Hassan, One-dimensional adaptive grid generation, Int. J. Math. Math. Sci, 20(3) (1997), 77–584.
- [32] S. A. Khuri, A new approach to Bratu’s problem, Appl.Math. Comput., 147(1) (2004), 131–136.
- [33] A. B. Koc, M. C¸ akmak, and A. Kurnaz, A matrix method based on the Fibonacci polynomials to the generalized pantograph equations with functional arguments, Adv. Math. Phys., 2014 (2014), 1–5.
- [34] M. Lakestani and M. Dehghan, The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets, Int. J. Comput. Math.,83(8-9) (2006), 685–694.
- [35] L. B. Liu, H. W. Liu, and Y. Chen, Polynomial spline approach for solving second-order boundary-value problems with Neumann conditions, Appl. Math. Comput., 217(16) (2011), 6872–6882.
- [36] Y. L. Luke, Inequalities for generalized hypergeometric functions, J.Approx. Theory, 5(1) (1972), 41–65.
- [37] T. Y. Na, computational Methods in Engineering Boundary Value Problems, Academic Press, (1980).
- [38] A. Napoli and W. M. Abd-Elhameed, An innovative harmonic numbers operational matrix method for solving initial value problems, Calcolo, 54(1) (2017), 57–76.
- [39] A. Napoli and W. M. Abd-Elhameed, A new collocation algorithm for solving even-order boundary value problems via a novel natrix method, Mediterr. J. Math.,14(4) (2017), 1–20.
- [40] A. K. Nasab, Z. P. Atabakan, and A. Kılı¸cman,An efficient approach for solving nonlinear Troesch’s and Bratu’s problems by wavelet analysis method, Math. Probl. Eng., 2013(1) (2013), Article ID 825817.
- [41] M. A. Noor, I. A. Tirmizi, and M. A. Khan, Quadratic non-polynomial spline approach to the solution of a system of second-order boundary-value problems, Appl. Math. Comp., 179(1) (2006), 153–160.
- [42] O¨ . Oruc, A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 14–25.
- [43] S. Pandit, R. Jiwari, K. Bedi, and M. E. Koksal, Haar wavelets operational matrix based algorithm for computa- tional modelling of hyperbolic type wave equations, Eng. Computations (2017).
- [44] M. A. Ramadan, I. F. Lashien, and W. K. Zahra, Polynomial and nonpolynomial spline approaches to the nu- merical solution of second order boundary value problems, Appl. Math. Comput., 184(2) (2007), 476–484.
- [45] M. N. Sahlan and H. Afshari, Lucas polynomials based spectral methods for solving the fractional order electrohy- drodynamics flow model, Commun. Nonlinear Sci. Numer. Simul., 107 (2022), 106–108.
- [46] S. C. Shiralashetti, A. B. Deshi, and P. B. Mutalik Desai, Haar wavelet collocation method for the numerical solution of singular initial value problems, Ain Shams Eng. J.,7(2) (2016), 663–670.
- [47] S. C. Shiralashetti and S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J., 57(4) (2018), 2591–2600.
- [48] S. C. Shiralashetti and K. Srinivasa, Hermite wavelets method for the numerical solution of linear and nonlinear singular initial and boundary value problems, Comput. Methods DEs, 7(2) (2019), 177–198.
- [49] M. I. Syam and A. Hamdan, An efficient method for solving Bratu equations, Appl. Math. Comput.,176(2) (2006), 704–713.
- [50] I. A. Tirmizi and E. H. Twizell, Higher-order finite-difference methods for nonlinear second-order two-point boundary-value problems, Appl. Math. Lett.,15(7)(2002), 897–902.
- [51] C. Tun¸c and E. Tun¸c, On the asymptotic behavior of solutions of certain second-order differential equations, J. Franklin Inst.,344(5) (2007), 391–398.
- [52] C. Tun¸c and O. Tun¸c, On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order, J. Adv. Res., 7(1) (2016), 165–168.
- [53] S. G. Venkatesh, S. K. Ayyaswamy, and S. R. Balachandar, The Legendre wavelet method for solving initial value problems of Bratu-type, Comput. Math. Appl., 63(8) (2012), 1287–1295.
- [54] F. Wang, Q. Zhao, Z. Chen, and C. M. Fan, Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains, Appl. Math. Comput., 397 (2021), 125903.
- [55] A. M. Wazwaz, A new method for solving singular initial value problems in the second-order ordinary differential equations, Appl. Math. Comput., 128(1) (2002), 45–57.
- [56] C. Yang and J. Hou, Chebyshev wavelets method for solving Bratu’s problem, BVPs, 2013 (1) (2013), 1–9.
- [57] A. Yıldırım and T. O¨ zi¸s, Solutions of singular IVPs of Lane–Emden type by homotopy perturbation method, Phys. Lett. A, 369(1-2) (2007), 70–76.
- [58] Y. H. Youssri, A new operational matrix of Caputo fractional derivatives of Fermat polynomials: an application for solving the Bagley-Torvik equation, Adv. Difference Equ., 2017(1) (2017), 1–17.
- [59] Y. H. Youssri, W. M. Abd-Elhameed, and A. G. Atta, Spectral Galerkin treatment of linear one-dimensional telegraph type problem via the generalized Lucas polynomials, Arab. J. Math., 11 (2022), 601–615.
|