- [1] M. Alipour, M. A. Vali, and A. H. Borzabadi, A direct approach for approximate optimal control of integro- differential equations based on homotopy analysis and parameterization method, IMA J. Math. Control Inf., 34(2) (2017), 611–630.
- [2] M. Alipour and S. Soradi-Zeid, Optimal control of time delay Fredholm integro-differential equations, J. Math. Model., 9(2) (2021), 277–291.
- [3] S. A. Belbas, A reduction method for optimal control of Volterra integral equations, Appl. Math. Comput., 197(2) (2008), 880–890.
- [4] A. Blokhuis, X. Cao, W. S. Chou, and X. D. Hou, On the roots of certain Dickson polynomials, J. Number Theory, 188 (2018), 229–246.
- [5] O. Cots, J. Gergaud, and D. Goubinat, Direct and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraft, Optim. Control. Appl. Methods, 39(1) (2018), 281–301.
- [6] R. Cont and E. Voltchkova, Integro-differential equations for option prices in exponential Levy models, Finance Stochastics, 9(3) (2005), 299–325.
- [7] W. S. Chou, The factorization of Dickson polynomials over finite fields, Finite Fields Appl., 3(1) (1997), 84–96.
- [8] S. B. Chen, S. Soradi-Zeid, M. Alipour, Y. M. Chu, J. F. Gomez-Aguilar, and H. Jahanshahi, Optimal control of nonlinear time-delay fractional differential equations with Dickson polynomials, Fractals, 29(4) (2021), 2150079– 270.
- [9] L. E. Dickson, The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group, Annal. Math., 11(1/6) (1896), 65–120.
- [10] A. Diene and M. A. Salim, Fixed points of the Dickson polynomials of the second kind, J. Appl. Math., 2013.
- [11] M. I. Kamien and E. Muller, Optimal control with integral state equations, The Review of Economic Studies, 43(3) (1976), 469–473.
- [12] O¨ . K. Ku¨rkcu¨, E. Aslan, and M. Sezer, A numerical approach with error estimation to solve general integro- differential-difference equations using Dickson polynomials, App. Math. Comput., 276 (2016), 324-339.
- [13] O¨ . K. Ku¨rkcu¨, E. Aslan and M. Sezer, A novel collocation method based on residual error analysis for solving integro-differential equations using hybrid Dickson and Taylor polynomials, Sains Malays, 46 (2017), 335–347.
- [14] O¨ . K. Ku¨rkcu¨, E. Aslan, and M. Sezer, A numerical method for solving some model problems arising in science and convergence analysis based on residual function, App. Num. Math., 121 (2017), 134–148.
- [15] P. Khodabakhshi and J. N. Reddy, A unified integro-differential nonlocal model, Int. J. Engineering Sci., 95 (2015), 60–75.
- [16] M. Lakestani and M. Dehghan, Numerical solution of fourth-order integro-differential equations using Chebyshev cardinal functions, Int. J. Comput. Math., 87(6) (2010), 1389–1394.
- [17] R. Lidl, G. L. Mullen, and G. Turnwald, Dickson polynomials, 65, Chapman and Hall/CRC, 1993.
- [18] N. Mahmoodi Darani, Hybrid collocation method for some classes of second-kind nonlinear weakly singular integral equation, Comput. Methods Differ. Equ., 2022.
- [19] J. Ma and G. Ge, A note on permutation polynomials over finite fields, Finite Fields Appl., 48 (2017), 261–270.
- [20] K. Maleknejad and H. Almasieh, Optimal control of Volterra integral equations via triangular functions, Math.comput. model., 53(9-10) (2011), 1902–1909.
- [21] K. Maleknejad and A. Ebrahimzadeh, The use of rationalized Haar wavelet collocation method for solving optimal control of Volterra integral equations, J. Vib. Control, 21(10) (2015), 1958–1967.
- [22] S. Mashayekhi, Y. Ordokhani, and M. Razzaghi, Hybrid functions approach for optimal control of systems described by integro-differential equations, Appl. Math. Model. 37(5) (2013), 3355–3368.
- [23] H. Mirinejad and T. Inanc, An RBF collocation method for solving optimal control problems, Rob. Auton. Syst., 87 (2017), 219–225.
- [24] A. S. Matveev and A. V. Savkin, Application of optimal control theory to analysis of cancer chemotherapy regimens, Syst. control lett., 46(5) (2002), 311–321.
- [25] J. Medlock and M. Kot, Spreading disease: integro-differential equations old and new, Math. biosciences, 184(2) (2003), 201–222.
- [26] N. Negarchi and K. Nouri, A New Direct Method for Solving Optimal Control Problem of Nonlinear Volterra- Fredholm Integral Equation via the Muntz-Legendre Polynomials, Bulletin of the Iranian Math. Society, 45(3) (2019), 917–934.
- [27] C. J. Oates, T. Papamarkou, and M. Girolami, The controlled thermodynamic integral for Bayesian model evidence evaluation, J. Am. Stat. Assoc., 111(514) (2016), 634–645.
- [28] B. Pan, Y. Ma, and Y. Ni, A new fractional homotopy method for solving nonlinear optimal control problems, Acta Astronaut., 161 (2019), 12–23.
- [29] N. Patel and N. Padhiyar, Modified genetic algorithm using Box Complex method: Application to optimal control problems, J. Process Control, 26 (2015), 35–50.
- [30] S. Paseban Hag, E. Osgooei, and E. Ashpazzadeh, Alpert wavelet system for solving fractional nonlinear Fredholm integro-differential equations, Comput. Methods Differ. Equ., 9(3) (2021), 762–773.
- [31] A. V. Rao, A survey of numerical methods for optimal control, Adv. Astronaut. Sci., 135(1) (2009), 497–528.
- [32] Z. Shabani and H.Tajadodi, A numerical scheme for constrained optimal control problems, Int. J. Ind. Electron. Control Optim., 2(3) (2019), 233–238.
- [33] T. Stoll, Complete decomposition of Dickson-type recursive polynomials and a related Diophantine equation, For- mal Power Series and Algebraic Combinatorics, Tianjin, China, 2007.
- [34] E. Safaie, M. H. Farahi, and M. F. Ardehaie, An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials, Comput. Appl. Math., 34(3) (2015), 831–846.
- [35] G. Tang and K. Hauser, A data-driven indirect method for nonlinear optimal control, Astrodynamics, 3(4) (2019), 345–359.
- [36] E. Tohidi and O. R. N. Samadi, Optimal control of nonlinear Volterra integral equations via Legendre polynomials, IMA J. Math. Control Inf., 30(1) (2013), 67–83.
- [37] Q. Wang and J. L. Yucas, Dickson polynomials over finite fields, Finite Fields Appl., 18(4) (2012), 814–831.
- [38] P. Wei, X. Liao, and K. W. Wong, Key exchange based on Dickson polynomials over finite field with 2m, JCP, 6(12) (2011), 2546–2551.
- [39] E. M. Yong, L. Chen, and G. J. Tang, A survey of numerical methods for trajectory optimization of spacecraft, J. Astronaut., 29(2) (2008), 397–406.
- [40] S. Yu¨zbasi and N. Ismailov, An operational matrix method for solving linear Fredholm-Volterra integro-differential equations, Turkish J. Math., 42(1) (2018), 243–256.
- [41] S. Yu¨zbasi, An exponential method to solve linear Fredholm-Volterra integro-differential equations and residual improvement, Turkish J. Math., 42(5) (2018), 2546–2562.
- [42] S. Yu¨zbasi, A shifted Legendre method for solving a population model and delay linear Volterra integro-differential equations, Int. J. Biomath., 10(07) (2017), 1750091.
- [43] S. Yu¨zbasi and M. Sezer, An exponential approach for the system of nonlinear delay integro-differential equations describing biological species living together, Neural Comput. Appl., 27(3) (2016), 769–779.
- [44] S. Yu¨zbasi, A collocation method based on Bernstein polynomials to solve nonlinear Fredholm-Volterra integro- differential equations, Appl. Math. Comput., 273 (2016), 142–154.
- [45] S. Yu¨zbasi, Improved Bessel collocation method for linear Volterra integro-differential equations with piecewise intervals and application of a Volterra population model, Appl. Math. Modell., 40 (9-10) (2016), 5349–5363.
- [46] S. Yu¨zbasi, Numerical solutions of system of linear Fredholm-Volterra integro-differential equations by the Bessel collocation method and error estimation, Appl. Math. Comput., 250 (2015), 320–338.
|