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Abstract

This paper is concerned with the numerical treatment of delay reaction-diffusion with the Dirichlet boundary

condition. The finite element method with linear B-spline basis functions is utilized to discretize the space variable.
The Crank-Nicolson method is used for the processes of time discretization. Sufficient and necessary conditions

for the numerical method to be asymptotically stable are investigated. The convergence of the numerical method

is studied. Some numerical experiments are performed to verify the applicability of the numerical method.
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1. Introduction

In this paper, we consider a class of the delay reaction-diffusion equation of the form [20]
∂u(x,t)
∂t = a1

∂2u(x,t)
∂x2 + a2u (x, t− τ) , t > 0, x ∈ Ω := [0, π],

u(x, t) = ϕ (x, t),−τ ≤ t ≤ 0, x ∈ Ω,
u(0, t) = u(π, t) = 0, t > 0,

(1.1)

with a1, a2 ∈ R with a1 > 0 and τ > 0 is a delay constant.
Reaction-diffusion equations with delay are widely applied to model natural phenomena in many areas of sciences
[15, 19, 30, 33, 35, 36, 39]. Numerous types of numerical methods are available in the literature for solving delay
reaction-diffusion equations (for details one may refer to [1, 14, 20, 25, 34, 40]). As far as we know, some of the
numerical methods available to approximate the diffusion term are based on the classical numerical methods, such as
finite difference method [32], finite element method [21], spectral method [7], Haar Wavelet [5], variational method [9],
and so on. Several types of partial differential equations are solved using finite element method [12, 13, 24]. The use of
various degrees of B-spline functions to obtain the numerical solutions of some partial differential equations has been
shown to provide easy and simple algorithms, for instance, B-spline finite elements have been widely applied to solve
elliptic equations [17, 28], Korteweg De Vries equation [2, 3, 37, 38], Burgers equation [4, 16, 23, 29], Regularized Long
Wave equation [10, 27], Fokker-Planck equation [18], advection-diffusion equation [11], and generalized equal width
wave equation [6], etc., successfully. On the other hand, the application of B-spline finite element method for solving
reaction-diffusion with delay receives less attention. In this paper, we have applied a linear B-spline finite element
method to find numerical solutions to the problem under consideration.

Received: 29 December 2021 ; Accepted: 06 June 2022.
∗ Corresponding author. Email: gemedatolesa@gmail.com .

161



162 G. T. LUBO AND G. F. DURESSA

Notations: Let Hr = Hr(Ω) = ωr2(Ω) denote the Sobolev spaces of order r with respective to norm ‖.‖r defined as

‖ν‖ = ‖ν‖L2
:=

(∫
Ω

ν(x)2dx

) 1
2

, (1.2)

and

‖ν‖r = ‖ν‖Hr :=

(∑
i≤r

∥∥∥∥∂iν(x)

∂xi

∥∥∥∥2
) 1

2

. (1.3)

Let ν(x), w(x)(x ∈ Ω) be real valued functions.

(ν(x), w(x)) :=

∫
Ω

ν(x)w(x)dx, (∇ν(x),∇w(x)) :=

∫
Ω

∂ν(x)

∂x

∂w(x)

∂x
dx. (1.4)

Assumptions: Assume u(t) := u(., t), ut(t) := ut(., t), utt(t) := utt(., t), uttt(t) := uttt(., t), ϕ(t) := ϕ (., t), and
ϕt(t) := ϕt(., t).

2. Stability Property of the Continuous Problem

In this section, based on [26], we give a sufficient condition for the trivial solution of the problem to be asymptotically
stable.

Definition 2.1. The solution of Eq. (1.1) is called asymptotically stable if the solution u(x, t), of Eq. (1.1), corre-
sponding to a sufficiently smooth function ϕ(x, t) satisfies

lim
t→∞

u(x, t) = 0, x ∈ [0, π]. (2.1)

Theorem 2.2. [26] Given the solution of the form u(x, t) = esteikx,where s ∈ C and k ∈ R for x ∈ [0, π] and t ≥ 0.
The sufficient condition for the zero solution of Eq. (1.1) to be asymptotically stable is that

|a2| < a1k
2, a1 > 0, and k = n, n = 1, 2, . . . . (2.2)

Proof. The zero solution of Eq. (1.1) is asymptotically stable only if all roots of the characteristic equation

s− a2e
−sτ = −a1k

2 (2.3)

have negative real parts. Substituting s = β + γi, β, γ ∈ R in Eq. (2.3) gives

(β + γi)− a2e
−(β+γi)τ + a1k

2 = 0. (2.4)

Separating real and imaginary parts yields{
β = a2e

−βτ cosγτ − a1k
2

γ = a2e
−βτsinγτ.

(2.5)

Assume that a1, a2 ∈ R and a1 > 0, then β is always negative when

a2cosγτ < a1k
2eβτ ⇒ |a2| < a1k

2. (2.6)

That means that when |a2| < a1k
2, then all zeros of the characteristic Eq. (2.3) have negative real part and hence

the trivial solution of Eq. (1.1) is delay -independently asymptotically stable. On the other hand, if |a2| > a1k
2, there

exists a root (2.3) with positive real part for some τ > 0, which implies unstable trivial solution. �
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3. Description of the Method

For the spatial discretization of system (1.1), we divide the interval Ω = [0, π] with a mesh: 0 = x0 < x1 < · · · <
xN = π with the space step size h = π/N .
The linear B-spline basis functions is chosen as follows:

Qj(x) =


x−xj−1

h , x ∈ [xj−1, xj ]
xj+1−x

h , x ∈ [xj , xj+1]
0, x /∈ [xj−1, xj+1]

j = 1, 2, . . . , N − 1. (3.1)

Introduce an arbitrary test function ν. Multiply Eq. (1.1) by this test function and integrate over the domain to
obtain the weak formulation∫

Ω

ut(x, t)νdx+ a1

∫
Ω

∂u (x, t)

∂x

∂ν

∂x
dx− a2

∫
Ω

u(x, t− τ)νdx = 0,∀ν ∈ H1
0 (Ω), t > 0. (3.2)

Equivalently, applying Green’s formula to the second term of equation Eq. (1.1) we can also write as

(ut(x, t), ν) + a1(∇u(x, t),∇ν)− a2(u(x, t− τ), ν) = 0,∀ν ∈ H1
0 (Ω), t > 0. (3.3)

Define the space

Sh = {ζ : ζ ∈ C2([0, π]), ζ|[xn−1,xn] ∈ P, 1 ≤ n ≤ N, ζ(0) = ζ(π) = 0}, (3.4)

where P is the space of all polynomials of degree less or equal to 1. We can find the approximate solution uh(t) :=
uh(., t) belonging to Sh for each t, so that{

(uh,t(t, ζ)) + a1(∇uh(t),∇ζ)− a2(uh(t− τ), ζ) = 0,∀ζ ∈ Sh, t > 0,
uh(x, t) = ϕh(x, t) = 0, t ≥ −τ, (3.5)

where ϕh(., t) is an approximation of ϕ(., t) in Sh.
Let ∆t = τ/m be a given step size with m ≥ 1, the grid points tn = n∆t(n = 0, 1, . . . ) and Un be the approximation
in Sh of u(t) at t = tn = n∆t.
Application of Galerkin Crank-Nicloson method to (1.1) gives a numerical scheme of the following type(

Un − Un−1

∆t
, ζ

)
+ a1

(
∇Un−1 +∇Un

2
,∇ζ

)
− a2

(
Un−m−1 + Un−m

2
, ζ

)
= 0, ∀ζ ∈ Sh, (3.6)

where Un(.) = ϕ(., tn) for −m ≤ n ≤ 0.
Let

Un(x) :=

N−1∑
j=1

Qj(x)αnj . (3.7)

Substituting Eq. (3.7) into Eq. (3.6) and choosing ζ = Qi, i = 1, . . . , N − 1, we get

1

∆t

N−1∑
j=1

(αnj − αn−1
j )(Qi(x), Qj(x)) =− a1

2

N−1∑
j=1

(αnj + αn−1
j )(∇Qi(x),∇Qj(x)) (3.8)

+
a2

2

N−1∑
j=1

(αn−m−1
j + αn−mj )(Qi(x), Qj(x)), (3.9)
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which can be rewritten as

1

∆t

N+1∑
j=1

(αnj − αn−1
j )

∫ π

0

Qi(x)Qj(x)dx =− a1

2

N−1∑
j=1

(αnj + αn−1
j )

∫ π

0

Q′i(x)Q′j(x)dx (3.10)

+
a2

2

N−1∑
j=1

(αn−m−1
j + αn−mj )

∫ π

0

Qi(x)Qj(x)dx. (3.11)

Define the following matrices:

A = (ai,j)
N−1
i,j=1 =

∫ π

0

Q′i(x)Q′j(x)dx, (3.12)

B = (bi,j)
N−1
i,j=1 =

∫ π

0

Qi(x)Qj(x)dx. (3.13)

We can explicitly write the entries of the matrices A and B in Eq. (3.12) and Eq. (3.13) as A = 1
h (2I − S) and

B = h
6 (4I + S),

where I is an identity matrix and

S =



0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 1 0


(N−1)×(N−1)

(3.14)

with its eigenvalues λSj = 2cos(jπ/N), j = 1, 2, . . . , N − 1.{
(B + 1

2a1∆tA)αn = (B − 1
2a1∆tA)αn−1 + 1

2a2∆tB(αn−m−1 + αn−m),
αn = γn, for −m ≤ n ≤ 0,

(3.15)

with γn = ϕ(tn) an initial approximation and αn := [αn1 , α
n
2 , . . . , α

n
N−1]T , and B + 1

2a1∆tA is positive definite and
hence, in particular, invertible. Therefore, αn can be obtained recursively by using the matrix inversion method.

4. Stability Analysis

In this section, the asymptotic stability analysis of the numerical scheme is investigated.

Definition 4.1. [22] If the solution Un of Eq. (3.6) corresponding to any sufficiently differentiable function ϕh(x, t)
with ϕh(0, t) =ϕh(π, t) = 0 satisfies

lim
n→∞

Un = 0, x ∈ [0, π], (4.1)

then the zero solution of Eq. (3.6) is called asymptotically stable.

The fully discrete numerical scheme can be written in the matrix form

ψ0(S)Un+1 = ψ1(S)Un − ψm(S)Un+1−m − ψm+1(S)Un−m, (4.2)

where

a =
a1∆t

∆x2
, b = a2∆t, (4.3)

ψ0(η) =
2

3
+ a+ (

1

6
− 1

2
a)η, (4.4)
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ψ1(η) =
2

3
− a+ (

1

6
+

1

2
a)η, (4.5)

ψm(η) =
1

3
b+

1

12
bη, (4.6)

ψm+1(η) =
1

3
b+

1

12
bη. (4.7)

It is well known that the trivial solution of Eq. (4.2) is asymptotically stable if and only if the characteristic polynomial

Pm(z) ≡ det[ψ(S)zm+1 − ψ1(S)zm + ψm(S)z + ψm+1(S)], (4.8)

is a Schur polynomial (that is, the modulus of all zeros of the characteristic polynomial is less than 1). Simple
calculation yields

Pm(z) =
∏

λj∈%[λj ]

[ψ(λj)z
m+1 − ψ1(λn)zm + ψm(λj)z + ψm+1(λj)]. (4.9)

Therefore, the numerical scheme (3.6) is asymptotically stable with respect to the trivial solution if and only if

Pm,j(z) = ψ0(λj)z
m+1 − ψ1(λj)z

m + ψm(λj)z + ψm+1(λj), (4.10)

is a Schur polynomial for all m ≥ 1, λj ∈ %[S], j = 1, 2, . . . , N − 1.
Substituting ψ0(λj), ψ1(λj), ψm(λj), ψm+1(λj) into Pm,j , we have

Pm,j =

[
2

3
+ a+ (

1

6
− 1

2
a)λj

]
zm+1 −

[
2

3
− a+ (

1

6
+

1

2
a)λj

]
zm +

[
1

3
b+

1

12
bλj

]
z +

[
1

3
b+

1

12
bλj

]
(4.11)

= zm

([
2

3
+ a+ (

1

6
− 1

2
a)λj

]
z −

[
2

3
− a+ (

1

6
+

1

2
a)λj

])
−

[
− 1

3
b− 1

12
bλj

]
(z + 1), (4.12)

Denote

αj(z) =

[
2

3
+ a+ (

1

6
− 1

2
a)λj

]
z −

[
2

3
− a+ (

1

6
+

1

2
a)λj

]
, (4.13)

βj(z) =

[
− 1

3
b− 1

12
bλj

]
(z + 1), (4.14)

then Eq. (4.12) can be written as

Pm,j = αj(z)z
m − βj(z). (4.15)

In order to prove that the characteristic polynomial is a Schur polynomial, we need the following lemma.

Lemma 4.2. [32] Let κm(z) = α(z)zm − β(z) be a polynomial, with α(z) and β(z) are polynomials of zero degree.
Then κm(z) is a Schur polynomial for m ≥ 1 if and only if the following conditions are satisfied

(i) α(z) = 0⇒ |z| < 1,
(ii) |β(z)| ≤ |α(z)| ,∀z ∈ C, |z| = 1, and

(iii) κm(z) 6= 0,∀z ∈ C, |z| = 1.

With the help of [26], we obtain the following theorem that leads to the sufficient and necessary conditions for the
numerical scheme (3.6) to be asymptotically stable.

Theorem 4.3. Suppose that a1 > 0 and |a2| < −a1λ
∗ (where λ∗ = −k2(≈ λj)). Then the zero solution of the Linear

B-spline finite element method is the delay independently asymptotically stable.
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Proof. Denote

αj(z) = [
2

3
+ a+ (

1

6
− 1

2
a)λj ]z − [

2

3
− a+ (

1

6
+

1

2
a)λj ], (4.16)

βj(z) = (−1

3
b− 1

12
bλj)(z + 1). (4.17)

Then

Pm,j(z) = αj(z)z
m − βj(z). (4.18)

We prove the theorem with Lemma 4.2. First, it follows from αj(z) = 0 that

|z| =
∣∣∣∣ 2

3 + a+ ( 1
6 −

1
2a)λj

2
3 − a+ ( 1

6 + 1
2a)λj

∣∣∣∣ , (4.19)

which implies αj(z) = 0⇒ |z| < 1. Thus, condition (i) of lemma 4.2 holds for j = 1, 2, . . . , N − 1.
In order to show that (ii) and (iii), we define the following complex variable function

ω =
αj(z)

βj(z)
(4.20)

=
[ 2
3 + a+ ( 1

6 −
1
2a)λj ]z − [ 2

3 − a+ ( 1
6 + 1

2a)λj ]

(− 1
3b−

1
12bλj)(z + 1)

. (4.21)

Set ω = x+ yi and |z| = 1, after some manipulations, we find

min
|z|=1,z∈C

∣∣∣∣αj(z)βj(z)

∣∣∣∣ =

∣∣∣∣6a(2− λj)
b(4 + λj)

∣∣∣∣ . (4.22)

It follows from the assumptions a1 > 0 and |a2| < −a1λ
∗, that 6a(2− λj) > b(4 + λj). Then, for all z ∈ C, |z| = 1,

we find that∣∣∣∣αj(z)βj(z)

∣∣∣∣ ≥ min
|z|=1,z∈C

∣∣∣∣αj(z)βj(z)

∣∣∣∣ =
6a(2− λj)
b(4 + λj)

> 1, (4.23)

which indicates that (ii) and (iii) of lemma 4.2 hold. �

5. Convergence Analysis

In this section, we present the convergence analysis for the proposed method.

The Ritz projection Rh : H1
0 (Ω)→ Sh is a mapping for any ν ∈ H1

0 (Ω) such that

(∇Rhν − ν,∇w) = 0,∀w ∈ Sh. (5.1)

Lemma 5.1. [31] Assume that for any v ∈ Hs(Ω) ∩H1
0 (Ω),

inf
ζ∈Sh

{‖ν − ζ‖+ h ‖∇(ν − ζ)‖} ≤ Chs ‖ν‖s , for 1 ≤ s ≤ r. (5.2)

holds. Then, with Rh defined by Eq. (5.1), we have

‖Rhν − ν‖+ h ‖∇(Rhν − ν)‖ ≤ Chs ‖ν‖s , (5.3)

for any ν ∈ Hs(Ω) ∩H1
0 (Ω), 1 ≤ s ≤ r.
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The number r is referred to as the order of accuracy of the family {Sh}. For the case of piecewise linear B-spline
function, r = 2.
Define u(t) := u(., t) and u : [0,+∞)→ H1

0 (Ω). Let Dh : H1
0 (Ω)→ Sh by

a1(∇Dhu(t)−∇u(t),∇ζ)− a2(u(t− τ), ζ) = 0,∀ζ ∈ Sh, (5.4)

Dhu(t) = Rhu(t) = Rhϕ(t), for − τ ≤ t ≤ 0. (5.5)

Based on [22], we have the following convergence theorem.

Theorem 5.2. Let u and Un be the solution of Eq. (3.3) and Eq. (3.6), respectively. Assume that ‖u(t)−Rhu(t)‖ ≤
Ch2 ‖u(t)‖2, ‖ut(t)−Rhut(t)‖ ≤ Ch2 ‖ut(t)‖2, −τ ≤ t ≤ 0 and ‖ϕh(t)− ϕ(t)‖ ≤ Ch2, then

‖Un − u(tn)‖ ≤ C(h2 + (∆t)2), for n = 1, 2, ... (5.6)

where C is a positive constant independent of h and ∆t.

Proof. Define

en = Un − u(tn) = (Un −Dhu(tn)) + (Dhu(tn)− u(tn)) = µn + σn, (5.7)

where
µn = Un −Dhu(tn), σn = Dhu(tn)− u(tn), so that

‖Un − u(tn)‖ ≤ ‖µn‖+ ‖σn‖ . (5.8)

The term σn(t) = σ(tn) is easily bounded by lemma 5.1(
µn − µn−1

∆t
, ζ

)
+ a1

(
∇µn +∇µn−1

2
,∇ζ

)
− a2

(
µn−m + µn−m−1

2
, ζ

)
= −(ωn, ζ), ∀ζ ∈ Sh, (5.9)

with

ωn =
Dhu(tn)−Dhu(tn−1)

∆t
− ut(tn) + ut(tn−1)

2
(5.10)

= (Dh − I)∂̄u(tn) +

(
∂̄u(tn)− ut(tn) + ut(tn−1)

2

)
=: ωn1 + ωn2 . (5.11)

Setting ζ = µn+µn−1

2 , gives(
µn − µn−1

∆t
,
µn + µn−1

2

)
+ a1

∥∥∥∥µn + µn−1

2

∥∥∥∥2

1

− a2

(
µn−m + µn−m−1

2
,
µn + µn−1

2

)
= −

(
ωn,

µn + µn−1

2

)
. (5.12)

By applying Schwartz inequality,(
µn − µn−1

∆t
,
µn + µn−1

2

)
+

∥∥∥∥µn + µn−1

2

∥∥∥∥2

1

≤ C

(∥∥∥∥µn−m + µn−m−1

2

∥∥∥∥2

1

+ ‖ωn‖
∥∥∥∥µn + µn−1

2

∥∥∥∥
)
. (5.13)

Hence

‖µn‖2 + ∆t

∥∥∥∥µn + µn−1

2

∥∥∥∥2

1

≤ C

(∥∥µn−1
∥∥2

+ ∆t

∥∥∥∥µn−m + µn−m−1

2

∥∥∥∥2

1

+ (∆t)2 ‖ωn‖2
)
. (5.14)

We can assume that n ∈ ((k − 1)m, km], k ∈ N . Then

∆t

∥∥∥∥µn + µn−1

2

∥∥∥∥2

1

≤ C

(∥∥µn−1
∥∥2

+ ∆t

∥∥∥∥µn−m + µn−m−1

2

∥∥∥∥2

1

+ (∆t)2 ‖ωn‖2
)

(5.15)
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≤ C

(∥∥µn−1
∥∥2

+
∥∥µn−m−1

∥∥2
+ ∆t

∥∥∥∥µn−2m + µn−2m−1

2

∥∥∥∥2

1

+ (∆t)2(‖ωn‖2 +
∥∥ωn−m∥∥2

)

)
(5.16)

≤ ... ≤ C

(
k−1∑
i=0

∥∥µn−im−1
∥∥2

+ ∆t

∥∥∥∥µn−km + µn−km−1

2

∥∥∥∥2

1

+ (∆t)2
k−1∑
i=0

∥∥ωn−im∥∥2

)
. (5.17)

So

‖µn‖2 ≤ C

(
k−1∑
i=0

∥∥µn−im−1
∥∥2

+ ∆t

∥∥∥∥µn−km + µn−km−1

2

∥∥∥∥2

1

+ (∆t)2
k−1∑
i=0

∥∥ωn−im∥∥2

)
. (5.18)

By applying Gronwall inequality (see [8, 17]),

‖µn‖2 ≤ C

(∥∥µ0
∥∥2

+ ∆t

∥∥∥∥µn−km + µn−km−1

2

∥∥∥∥2

1

+ (∆t)2
k−1∑
i=0

∥∥ωn−im∥∥2

)
. (5.19)

We write

ωn1 = (Dh − I)∂̃u(tn) = ∆t−1

∫ tn

tn−1

(Dh − I)ut(t)dt, (5.20)

hence

(∆t)2
k−1∑
i=1

∥∥ωn−im1

∥∥2 ≤
k−1∑
i=1

(∫ tn−im

tn−im−1

Ch2 ‖ut(t)‖2 dt

)2

≤ C(h2)2. (5.21)

Further ∥∥∆tωi2
∥∥ =

∥∥∥∥u(ti)− u(ti−1)−∆t
ut(ti) + ut(ti−1)

2

∥∥∥∥ ≤ C(∆t)2

∫ ti

ti−1

‖uttt(t)‖ dt, (5.22)

such that

(∆t)2
k−1∑
i=1

∥∥ωn−im2

∥∥2 ≤ C(∆t)4
k−1∑
i=1

(∫ tn−im

tn−im−1

‖uttt(S)‖ dt

)2

≤ C(∆t)4. (5.23)

From Eqs. (5.21) and (5.23), we have

‖Un − u(tn)‖ ≤ C(h2 + (∆t)2), for n = 1, 2, . . . . (5.24)

�

6. Numerical Experiments

The performance of the proposed numerical method is tested by using numerical experiments. To evaluate errors,
L∞ and L2 error norms are applied as follows:

L∞ = max
1≤n≤N

|u(tn)− (Un)| , L2 =

√√√√h

N∑
i=1

|u(tn)− (Un)|2. (6.1)

Order of convergence is obtained by

Order =
log(Eh1/Eh2)

log(h1/h2)
, (6.2)

where Eh1 and Eh2 represent the errors at step sizes h1 and h2, respectively.
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Figure 1. The numerical solution of Example 6.1 with a) N = 10, m = 40, and τ = 1 b) N = 10,
m = 50, and τ = 1.
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Figure 2. The numerical solution of Example 6.1 with a) N = 10, m = 100, and τ = 1 b) N = 10,
m = 200, and τ = 1.

Example 6.1. Consider Eq. (1.1) with parameter values a1 = 1, a2 = 2, τ = 1, initial function

u(x, t) = ϕ(x, t) = sin(x), (6.3)

and boundary conditions of the Dirichlet type

u(0, t) = u(π, t) = 0, t > 0. (6.4)

The numerical results are obtained and plotted at time T = 2 using different step sizes (∆t = τ/m,h = π/N)
in Figures 1 and 2. These figures show that the numerical solution is asymptotically stable. And these confirm the
theoretical analysis in Theorem 4.3.

Example 6.2. We consider the reaction-diffusion equation with the delay

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + u(x, t)− e−τu(x, t− τ), x ∈ [0, π], t > 0, (6.5)

subject to the boundary conditions

u(0, t) = u(π, t) = 0, t > 0, (6.6)
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initial condition

u(x, t) = ϕ(x, t) = sin(x), (6.7)

and with the exact solution

u(x, t) = exp(−t)sin(x). (6.8)

Here, we solve the problem on [0, π]× [0, 2] with different temporal and spatial step sizes (∆t = τ/m h = π/N).

Table 1. The error norms and convergence order for different m and N at fixed τ = 0.5 and T = 1
for example 6.2.

N m L2 Order L∞ Order

5 50 1.2560e-02 - 9.5312e-03 -
10 100 3.1306e-03 2.0043 2.4979e-03 1.9319
20 200 7.8196e-04 2.0013 6.2391e-04 2.0013
40 400 1.9545e-04 2.0003 1.5594e-04 2.0003
80 800 4.8858e-05 2.0001 3.8983e-05 2.0001

Table 2. The error norms and convergence order for different m and N at fixed τ = 0.5 and T = 1
for example 6.2.

N m L2 Order L∞ Order

4 40 1.9659e-02 - 1.5685e-02 -
8 80 4.8947e-03 2.0059 3.9054e-03 2.0058
16 160 1.2220e-03 2.0020 9.7503e-04 2.0020
32 320 3.0540e-04 2.0005 2.4367e-04 2.0005
64 640 7.6342e-05 2.0002 6.0912e-05 2.0001

Table 3. Comparison of the numerical solutions obtained with various values of m for N = 10, T = 1,
and τ = 0.5 with the exact solution for Example 6.2.

x
Numerical solutions Exact solution

m =10 m =20 m =40 m =60 m =80

0.1π 0.18741 0.18742 0.18743 0.18743 0.18743 0.18743
0.2π 0.35647 0.35650 0.35651 0.35651 0.35651 0.35651
0.3π 0.49064 0.49068 0.49069 0.49069 0.49069 0.49069
0.4π 0.57678 0.57683 0.57684 0.57684 0.57684 0.57684
0.5π 0.60647 0.60651 060652 0.60652 0.60653 0.60653
0.6π 0.57678 0.57683 0.57674 0.57684 0.57684 0.57684
0.7π 0.49064 0.49068 0.49069 0.49069 0.49069 0.49069
0.8π 0.35647 0.35650 0.35651 0.35651 0.35651 0.35651
0.9π 0.18741 0.18742 0.18742 0.18742 0.18743 0.18743

Numerical errors and the corresponding orders are listed in Tables 1 and 2. As it can be seen from these tables,
there is a noticeable decrease in both error norms when mesh sizes decrease. These results confirm the convergence
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Figure 3. Comparison between approximate and exact solutions of Example 6.2 (N = 10,m = 10,
τ = 1, and T = 2).
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Figure 4. Comparison between approximate and exact solutions of Example 6.2 (N = 10,m = 100,
τ = 1, and T = 2).
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Figure 5. Approximate and exact solutions for different time levels for Example 6.2 (N = 10,m =
200, τ = 1, and T = 2).
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Figure 6. Approximate and exact solutions for different time levels for Example 6.2 (N = 10,m =
100, τ = 1, and T = 2).

of the numerical scheme. In Figures 3 and 4, the exact and numerical solutions are depicted. By comparing the two
solutions, we observe that the solution obtained by the presented method is comparable with the one obtained by
analytical method. Figures 5 and 6 correspond to the exact and approximate solutions at different time levels.

7. Conclusion

In this paper, a finite element method is constructed based on linear B-spline basis functions for solving reaction-
diffusion equations with delay. The detailed description of results through tables and graphs proves that the proposed
numerical method is working efficiently. For all the test cases, simulations at a different set of data points are carried
out to check the applicability of the numerical scheme. Based on these observations, our expectation that the given
method is well suited to reaction diffusion with the delay is confirmed.
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