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Abstract 

Different types of contact, including contact between node pairs, any-contact of nodes, and contacts of the entire network, 

are used to characterize social relations in mobile social networks. Different modes of routing, from the point of view of 

message delivery semantics, encompass unicasting, multicasting, any-casting, and broadcasting. Studies have shown that 

using probability distribution functions of contact data, which is mainly assumed to be homogeneous for nodes, improves 

the performance of these networks. However, there exists an important challenge in studies on distributions. A lot of 

works apply the distribution of one type of contact to other types. Hence in routing applications, it causes to use of the 

distribution of one type of contact for any mode of routing. This study provides a complete solution to model each type 

of homogeneous contact data distribution and to use them in different modes of routing. We propose a routing algorithm 

that uses this new model. Results show that our solution improves the average latency of comparing methods Epidemic, 

TCCB, and DR about 3.5-times, 30%, and 45%, respectively. It achieves a delivery rate of about 5% and 6%, and average 

latency about 6% and 8% better than that of DR and TCCB, respectively. 

 

Keywords: Mobile social networks, types of contact, homogeneous contact, contact data distribution, modeling of 

contacts.  

 

1. Introduction 

   The application of various telecommunication 

capabilities and powerful and lightweight means 

approximates the vision of “ubiquitous networks” to 

reality. Mobile Social Networks (MSN) is one of the 

solutions, which applies a wide range of communication 

means, (e.g., smartphones and mobile computers) with 

processing capability. MSN uses opportunistic 

communication, delay-tolerant networks (DTN) 

architecture, and the store-carry-forward mechanism 

[2,4]. 

   MSN is used in many cases. For example, where there 

is no fixed network infrastructure, governments have cut 

it off, it is destroyed by natural causes such as floods and 

earthquakes, or there is a possibility of eavesdropping or 

filtering. The techniques of social networking are being 

applied in the field of communication and information 

technologies to provide efficient solutions for content 

exchange, and also delivery services [25]. MSN is also 

used to leverage cellular links by offloading mobile 

traffic via device-to-device communications. Another 

application of MSN is its role in 5G networks as 5G MSN 

to handle the highly increasinging content demand of 

mobile users [16]. 

   In the MSN, the network is permanently prone to 

fragmentation due to unstable and disrupted links and 

frequent disconnections. When two nodes come in the 

communication range of each other and are connected via 

wireless links, we can say they are in contact.  

Different contact types are used to characterize contact 

and social relations in the MSN literature [4,10]. We 

categorize them using our notation as follows: 

 Node pairs contact (inter-contact) times /frequency: 

Hereafter we call this type of contact CTYPE1 and 

define it as follows. If we assume i and j denote node 

pairs from the set of nodes N of the network, then a 

contact time of the node pairs (i,j) is defined as the 

duration of contact between them. All contact times 

that occur between node pairs (i,j) are denoted as 

CT(i,j). Similarly, inter-contact time is defined as the 

duration between two consecutive contacts of the 

same node pairs. We denote inter-contact times of 

node pairs (i,j) as ICT(i,j). Contact frequency and 

inter-contact frequency of node pairs (i,j), which 

show the number of contacts and inter-contacts, are 

denoted as CF(i,j) and ICF(i,j), respectively.  

 Any-contact (any inter-contact) times/frequency 

(CTYPE2): We define the any-contact time of a node 

i as the duration which node i encounters any node 

belonging to a specific subset of nodes. All any-

contact times that occur between node i and those 

nodes are denoted as ACT(i). Similarly, any-inter-

contact times, any-contact frequency, and any inter-

Contact frequency of node i, are denoted as AICT(i), 

ACF(i), and AICF(i), respectively.  

 Entire network contact (inter-contact) times/          

frequency (CTYPE3): we define the entire network 

contact time of the network as the duration of 
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contacts between all nodes. All contact times that 

occur between all nodes of the network are denoted 

as ENCT. Similarly, entire network inter-contact 

times, entire network contact frequency, and entire 

network inter-contact frequency are denoted as 

ENICT, ENCF, and ENICF, respectively. 

   Because the latency and long queues are the main 

features of this network, taking advantage of contact 

opportunities is crucial. Accordingly, routing attracts 

special attention in this type of network [3,4]. 

   Although a lot of efforts work on congestion control 

and buffer management [5,6], their goal is to improve 

network performance in packet forwarding and routing. 

To optimize performance, [6] and some works in [5] try 

to control the workload of the network by limiting the 

number of copies, but they neglect to take into account 

the contacts information. 

   The dominant routing solution in MSN is called “social-

aware routing” [8]. Methods of this solution utilize 

different social features to make decisions in the 

forwarding of messages. The main object of routing 

includes maximizing the delivery rate while minimizing 

the overhead and the delivery latency [9]. 

   The social features of nodes can be achieved in two 

ways. Some of them (e.g., interest, nationality, and 

language) are obtained from the registered profile of the 

nodes. Other features (e.g., similarity, centrality, trust, tie 

strength, closeness, and distance) can be calculated from 

the contact information of the nodes. Thus, nodes log 

their contact information and that of others. In TCCB [26] 

forwarding procces, using the average and variance of 

ICT in a certain period, a metric called temporal closeness 

is applied to forward messages as the first step. As the 

next step, using the temporal closeness of node pairs, a 

metic called temporal centrality is applied taking into 

account all nodes in the network. The message is 

forwarded to nodes with higher temporal closeness with 

the destination. 

   It is believed that using contacts probability 

distributions, more accurately, describes and predicts 

important quantities such as contact time, inter-contact 

time,  the number of contacts, and their related social 

features [1,12,13]. Many studies in the literature use 

probability distribution functions for CTYPEs [4,14,15].  

On the other hand, from the point of view of message 

delivery semantics, there are various routing modes in the 

literature [8][9] as follows: 

 Unicast concentrates on the forward messages to 

a single destination. 

 Multicast involves the distribution of a message 

to a group of nodes. 

 Anycast focuses on the forward messages to any 

member of a group of nodes. 

  Broadcast: it deals with the distribution of 

messages to entire network nodes. 

   Some works such as [17] assumed regularity in mobile 

node movements and sought to predict their location and 

time to design a routing algorithm. Nevertheless, the 

assumption of order in motion is not applicable in all 

circumstances. Therefore, exploiting the probability 

distribution functions in estimating the ON/OFF periods 

of links and contacts is considered in various wireless 

mobile networks [18]. In [7], the authors investigated a 

delay-tolerant offloading solution and proposed an 

optimization mechanism that utilizes user movement 

pattern prediction to formulate a model obtaining the 

optimal placement of complimentary WiFi networks and 

their bandwidth allocation. Since the MSN can help 

cellular links by offloading mobile traffic via device-to-

device communications, such mechanisms can benefit 

from the capabilities of this network. 

   In [1], a general framework based on semi-Markov 

processes is proposed for modeling delivery in 

opportunistic networks. The authors consider the 

exponential, power-law, and hyper-exponential 

distributions for ICT and neglect CT in modeling. Authors 

in [14] conduct a multicasting method using a weighted 

graph of network contacts. They assume exponential 

distribution for nodes ACT data based on CCDF of the 

ENCT data. Work [11] addresses the problem of relay 

selection for multicasting data using a centrality metric 

defined as the Cumulative Contact Probability. It is 

assumed Poisson process for average CF and exponential 

distribution for ICT. Article [15] confirms that power-law 

distribution with exponential cut-off better models the 

beginning of the CT/ICT. The ICT is used for community 

detection and the similarity and friendship features in the 

forwarding stage.  

   Work [16] which provides a comprehensive survey of 

influential nodes discovering methods in MSNs, is in 

accordance with the power-law assumption for ICT data. 

Label [10] shows using a small label to identify users  

affiliation community, bring a large improvement in 

forwarding performance. The authors assume power-law 

distribution for ICT. Article [4] uses social features 

similarity, centrality, friendship, social strength, and trust 

each with a variable coefficient as the utility function. It 

divides the nodes into triple communities, including 

nodes with high cumulative CT and ICT, low cumulative 

CT and ICT, and the rest of the nodes. The distributions 

of contact and inter-contact times of all CTYPEs are 

assumed heavy tail. The Authors in [27] recognized that 

there is not always a direct relation between ENICT and 

ICT. They realize that heavy-tail ENICT can emerge also 

from exponential ICT when their rates have a certain 

characteristic. Authors in [19] exploit the transient node 

contact patterns to improve data forwarding in DTN. 

They apply Poisson, exponential, normal distributions to 

CF, ICT, and CT. 
   Some articles have examined the distribution of a 

node's contact with communities. Authors of [28] propose 

a novel zero-knowledge multi-copy routing algorithm, 

homing spread (HS), for MSNs. They assume that inter-

contact time between any two nodes and between a node 

and a community home follows independent and identical 

exponential distributions, respectively. From the point of 

view of contact distribution, this case can be considered 

as a type of multi or any–contact. Here, for the sake of 

brevity, we abstain to bring more references. To 

summarize, we compare some previous works in Table I. 
   With recent discussion, it should be clear to some extent 

that each CTYPE is applicable for a specific routing 

mode. For example, the CTYPE1 should be used in 

unicast, the CTYPE2 in anycast, and the CTYPE3 in the 

broadcast. Therefore, proper use of CTYPEs for routing 

modes is highly important to improve the performance of 
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MSN. Hence, it is necessary to provide a model for how 

to properly extract the contact data distribution and 

generalize them correctly. Because the application of 

distributions is the same for anycast and multicast, 

hereafter we categorize them into the anycast. 
   However, major challenges remain. Some works 

generalize the distribution model of one type of contact 

to other types and use them in several applications such 

as routing and community detection. 
 

 

 

Table I. Comparing some previous works. 

Work Contact model stated Distribution applied Generalization Challenges 

[1] ICT 
power law, exponential, 

hyper exponential 
No 

- neglects CTYPE1(CT) in modeling 

- does not model other CTYPEs 

[14] CF, ICT Poisson, exponential from ENCT 

- ignores CTYPE1(CT) in modeling 

- does not model other CTYPEs 

- generalization is not justified 

[4] CT, ICT, ACT, AICT heavy tail by analysis 
- does not model CTYPE3 

- generalizations are not justified 

[27] ICT, ENICT exponential, heavy tail No 

- does not provide any model for non- 

  generalization 

- does not model CTYPE1(CT), 

  CTYPE2 and CTYPE3(ENCT) 

[11] CF, ICT Poisson, exponential No   As work [14] 

[15] ENCT, ENICT 
power-law with 

exponential cut off 
to CT and ICT 

- does not model other CTYPEs 

- generalizations are not justified 

[19] CF,ICT,CT 
Poisson, exponential, 

normal 

from ENCF, ENICT, 

ENCT 

- does not model CTYPE2,3 

- generalizations are not justified 

[10] ICT, AICT, ENICT power law 
from ENICT, by 

analysis, by analysis 

- does not model CTYPE1(CT), 

CTYPE2(ACT), and CTYPE3(ENCT) 

- generalization is not justified 

     

   For example, some works assume that the inter-

contact time distribution of CTYPE3 follows the 

exponential or Pareto distribution. Then, they apply the 

same model to CTYPE2 and even to CTYPE1. It causes 

to use of broadcast data for any- and unicast purposes. 

The same challenge exists with other contact types. This 

important issue has not been addressed in the literature, 

and we try to clarify it. 

   Moreover, we provide a complete solution for the 

above-mentioned challenge. Eventually, this study tries 

to show the implication of this approach through a 

unicast routing method. 

The following contributions can be mentioned: 
 

A. Challenging the abusive generalization of the 

probability distribution of different CTYPEs to each 

other and their application in different routing modes.  
 

B. Modeling different types of contacts with 

homogeneous assumption among nodes, using sums of 

several random variables theory. 
 

C. Applying the proposed model to various routing 

modes.  
D. Evaluation of the impact of contact distribution on 

network performance by using a routing method. 
 

   The remaining parts of the study are as follows: 

Section 2 describes the suggested model. Section 3 

covers the proposed routing algorithm. Performance 

evaluations and results are presented in Section 4. 

Conclusions and future studies are discussed in Section 

5. Finally, Section 6 presents the references. 

 

2. Proposed model for different contact types and 

routing modes 
 

   Based on the different contact types discussed, we can 

be claim that there is an important issue in the literature, 

which should be addressed. The studies mainly obtain 

the distribution of one type of contact and generalize it 

to other types. Accordingly, these methods assume that 

the probability of observing a particular node by another 

node is equal to the probability of seeing any neighbours 

of that node, also to the probability of seeing each node 

by any other node in the network. In the other words, 

they calculate different probabilities using the same 

distribution function.  

   In this section, we explain our solution on how to 

model contact types and generalize the distribution of 

them to each other and use them in different routing 

modes, assuming homogenous distribution. To model 

the contact data, we classify the probability distribution 

functions into three categories: 

Class1 includes functions in which the distribution of 

the sums of several random variables is of a known 

distribution function with specific parameters. 

Class2 includes functions in which the distribution of 

the sums of several random variables is the same type as 

the constituent random variables function. 

Class3 includes functions in which the distribution of 

the sums of several random variables is neither of the 

same type nor of a known distribution function. 

 
2.1. Modelling CTYPEs data for unicast routing 
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   For unicast routing, we propose a criterion,𝐶𝑙𝑜𝐷𝑖𝑠 𝑖𝑗
𝑡 .  

Given the independence of contact times and inter-

contact times of CTYPE1, CTYPE2, and CTYPE3, we 

define the CloDis as follows: 

CloDis(contacts ,distributions parameters) = 

(µC, σC, τC,vC ,µiC, σD, τD,vD) 
(1) 

Where C and D represent the random variables of 

concerned contact and inter-contact times. Further, µ, σ, 

τ,v represent mean, standard deviation, kurtosis, 

skewness, or other parameters of the related distribution. 

The letters C and D denote closeness/distance 

abbreviated in the term CloDis. 

   Furthermore, we define an appropriate definition of 

CloDis for each routing mode. For instance, 𝐶𝑙𝑜𝐷𝑖𝑠 𝑖𝑗
𝑡  

holds pairs of nodes i and j contact distributions 

parameters used in unicast routing, 𝐶𝑙𝑜𝐷𝑖𝑠𝑖
𝑡  holds any-

contact distribution parameters of node i  used in anycast 

routing, and 𝐶𝑙𝑜𝐷𝑖𝑠𝑡 holds distribution parameters of 

entire network contacts used in broadcast routing, in the 

interval including time t.  

   Several different states occur to model CloDis 𝑖𝑗
t , 

given that only CTYP1 data are available or 

distributions of other routing modes. If only CTYPE1 

data is available, we model it by obtaining its 

distribution function using best fitting methods. We do 

not bring here the best fitting methods. However, if 

distribution functions of other routing modes are 

available, we can use the solutions described in Sections 

2.2 (i), 2.2(ii), 2.3(i), and 2.3(ii) that are based on sums 

of several random variables theory. Modeling of 

𝐶𝑙𝑜𝐷𝑖𝑠𝑖
𝑡  and 𝐶𝑙𝑜𝐷𝑖𝑠𝑡  are given below.  

 

2.2. Modeling CTYPEs data for anycast routing 

   This mode of routing is intended to compute 𝐶𝑙𝑜𝐷𝑖𝑠𝑖
𝑡  

for each node i in our approach. Obtaining anycast 

contacts distribution is possible in the following ways: 

 Best fitting CTYPE2 data. 

 Generalizing of unicast/broadcast contacts 

distribution if possible. 

   if we have the unicast/broadcast contacts distribution 

in hand, we can use the sums of several random 

variables theory to obtain anycast distribution function 

while the unicast/broadcast distribution is of the Class-

1 or 2. Otherwise, if the distribution is of Class-3, we 

have to obtain it using best fitting methods. So, 

depending on the distributions Class, three following 

states occur. We use character ‘/’ instead ‘and/or’ in 

such cases. It is necessary to mention that if the 

unicast/broadcast distribution is not available, a best 

fitting method should be applied to CTYPE2 data. 

 
i. Unicast/broadcast distribution belong(s) to Class-1: 

   In this case, 𝐶𝑙𝑜𝐷𝑖𝑠 𝑖𝑗
𝑡  of every node j belonging to 

anycast destinations nodes subset and/or 𝐶𝑙𝑜𝐷𝑖𝑠𝑡 are 

available to node i and we should obtain the𝐶𝑙𝑜𝐷𝑖𝑠𝑖
𝑡 .  

   Without loss of generality, suppose ICT(i,j) follows an 

exponential distribution for every node i and j, with the 

mean parameter 1/𝜆. For node i, we show the set of j 

indexes as Ai = {a1, a2, a3, .., as}. Therefore, we can take 

the random variable of the AICT(i), Ui, equal to the sums 

of independent identical random variables of ICT(i,j)j𝟄A 

and express it as follows: 

Ui = 𝑈𝑖a1
+ 𝑈𝑖a2

 + 𝑈𝑖a3
 + … + 𝑈𝑖a𝑠

 (2) 

   To calculate Ui, we use the torque generating function 

as follows: 

𝑀𝑈𝑖
(𝑡) =  𝑀 𝑈𝑖a1

(𝑡)𝑀 𝑈𝑖a2
(𝑡). . . 𝑀 𝑈𝑖a𝑠

(𝑡) =  

∫ 𝑒−𝑡𝑈𝑖a1𝜆𝑒−𝜆𝑈𝑖a1 𝑑𝑥
∞

0
. . .  ∫ 𝑒−𝑡𝑈𝑖as

∞

0
𝜆𝑒−𝜆𝑈𝑖as𝑑𝑥 =       

𝜆

𝜆 − 𝑡

𝜆

𝜆 − 𝑡
…

𝜆

𝜆 − 𝑡
 =  

𝜆𝑠

(𝜆 − 𝑡)𝑠
    (3) 

This is the Gamma random variable torque generator 

function with parameters (s,  𝜆 ) with the following 

density function: 

𝑓(𝑢𝑖) =  𝜆𝑒−𝜆𝑢𝑖
(𝜆𝑢𝑖)

𝑠−1

(𝑠 − 1)!
    , 𝑢𝑖 ≥ 0    (4) 

    It means sums of several independent random 

variables of an exponential distribution is a Gamma 

distribution. Thus, if we want to generalize unicast 

exponentially distributed data to anycast, we should take 

a Gamma distribution, not an exponential one.  
   To obtain the ACF(i) distribution, with random 

variable Ri, without loss of generality, we assume 

Geometric distribution with parameter 𝑝  for 

independent identical random variables of CF(i,j)j𝟄A. 

Therefore, Ri is obtained from the following relation: 

𝑀𝑅𝑖
(𝑡) =  𝑀 𝑅𝑖a1

(𝑡)𝑀 𝑅𝑖a2
(𝑡). . 𝑀 𝑅𝑖a𝑠

(𝑡) =                (5) 

𝑝𝑒𝑡

1 − (1 − 𝑝)𝑒𝑡
…

𝑝𝑒𝑡

1 − (1 − 𝑝)𝑒𝑡
 =  (

𝑝𝑒𝑡

1 − (1 − 𝑝)𝑒𝑡
)𝑠  

This is the generator function of negative binomial 

distribution torques with the (p,s) parameters. Similar 

inferences can be made for ACT(i) and AICF(i). It 

should be noted that in this case, the resulting 

distributions are not the same as the distribution of 

primary (constituent) random variables. 

   Here, two conclusions may be obtained. First, the 

reverse of the presented solution can be used to 

generalize the distribution of anycast data to unicast. 
Second, the distribution of anycast contacts can also be 

obtained from broadcast distribution. We postpone the 

generalization solution to Sections 2.3(i) and 2.3(ii).  

 

ii. Unicast/broadcast distribution belong(s) to Class-2: 

   Without loss of generality, we assume CT(i,j) follows 

normal distribution Uij~N(µij,𝜎𝑖𝑗
2 ) and Ai is the set of 

anycast destinations of node i. The sums of participating 

random variables, Ui, follows normal distribution 

Ui~N(µi,𝜎𝑖
2) with the following parameters: 

µi = ∑ µ
a𝑠
𝑗=a1 𝑖𝑗

 , 𝜎𝑖
2 = ∑ 𝜎𝑖𝑗

2a𝑠
𝑗=𝑎1

 (6) 

   It can be proved through relations similar to section 

2.2 (i). We see in this case, the resulting function for 

ACT(i) is the same as the primary functions. Also, if we 

represent CF(i,j)j𝟄A with the Poisson distribution Qij 

with the parameter of𝜆𝑖𝑗, the sums of the participating 

random variables, Qi as the ACF(i), follow a Poisson 
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distribution as well. The density function of Qi can be 

expressed as follows: 

𝑔(𝑞𝑖) =  ∑ 𝜆𝑖𝑗
a𝑠
𝑗=a1

∗ exp (− 𝑞𝑖 ∑ 𝜆𝑖𝑗)
a𝑠
𝑗=a1

  (7) 

   A similar proof can be given for AICT(i) and AICF(i). 

It is clear that if the distribution of unicast contacts is of 

Class-2 functions, it can be applied to anycast contacts 

and vice versa. As we will see in Section 2.3(ii), this 

relationship is also established between broadcast and 

anycast modes. 

 

iii.Unicast/broadcast distribution belong(s) to Class-3: 
   In this case, the distribution of unicast//broadcast 

random variables cannot be generalized to sums of 

anycast participating random variables. Moreover, the 

methods of previous parts of this section are not 

applicable either. Accordingly, only a best fitting 

method should be applied. 

2.3. Modeling CTYPEs data for broadcast routing 
   In our approach, we need to calculate 𝐶𝑙𝑜𝐷𝑖𝑠𝑡  for this 

mode of routing. Thus, depending on which class the 

distribution Unicast/anycast belongs to, three following 

states occur. It is necessary to mention that if the 

unicast/broadcast distribution is not available, a best 

fitting method should be applied to CTYPE3 data. 

 

i. Unicast/anycast distribution belong(s) to Class-1: 

   In this case, broadcast contacts distribution that is 

related to  𝐶𝑙𝑜𝐷𝑖𝑠𝑡 , can be obtained using any of the 

unicast and anycast contacts distributions. Through 

unicast distributions, with similar assumptions of 

Section 2.2(i) about CT(i,j) and the number of network 

nodes m, we can show the entire network contacts 

random variable, U, as follows: 

U = ∑ ∑ 𝑈𝑖𝑗
𝑚
𝑗=2

𝑚−1
𝑖=1  (8) 

Therefore, equation (4) changes as follows:  

𝑓(𝑢) =  𝜆𝑒−𝜆𝑢 (𝜆𝑢)𝑚(𝑚−1)/2

((
𝑚(𝑚−1)

2
)−1)!

    , 𝑢 ≥ 0  (9) 

   In relation (5), the parameter s changes to m(m-1)/2, 

and concerned discussion is also established. Similar 

relations are obtained to 𝐶𝑙𝑜𝐷𝑖𝑠𝑡  calculating through 

anycast distributions.     
   Some results are as follows. First, unicast/anycast 

contacts distribution should not be applied always to the 

distribution of entire network contacts as the broadcast 

contacts. Second, the reverse of the present solution can 

also be used to generalize the distribution of broadcast 

to unicast/anycast modes.  
 

ii. Unicast/anycast  distribution belong(s) to Class-2: 
   Recall from Section 2.2(ii), we showed that the 

resulting function for 𝐶𝑙𝑜𝐷𝑖𝑠𝑖
𝑡  is the same as the 

primary functions. This inference also applies to the 

present state 𝐶𝑙𝑜𝐷𝑖𝑠𝑡 .  Using unicast distributions, we 

can argue that the distribution of ENCT as sums of entire 

network nodes random variables is normal U~(µ,𝜎2 ) 

with parameters as follows: 

µ = ∑ ∑ µ𝑚
𝑗=𝑖

𝑚−1
𝑖=1 𝑖𝑗

  ,  𝜎2 = ∑ ∑ 𝜎𝑚
𝑗=𝑖 𝑖𝑗

2𝑚−1
𝑖=1      (10) 

   A similar proof can be made using anycast contacts 

distribution. Proofs for ENICT, ENCF, and ENICF are 

not brought here for brevity. 

   We end this part with a conclusion. If the distribution 

of unicast/anycast contacts is of Class-2, it can be 

applied to broadcast and vice versa. 
 
iii) Unicast/anycast distribution belong(s) to Class-3: 
   In this case, as we have argued before, the distribution 

of unicast/anycast contacts cannot be generalized to 

sums of them as the broadcast contacts. Accordingly, 

only a best fitting method is applied.  

   It is worth mentioning that applying the distributions 

of CTYPE3 to CTYPE2 and/or to CTYPE1 is incorrect 

in some cases and has no theoretical basis. Therefore, 

their use in any application such as routing may lead to 

wrong results. We summarize the proposed solutions of 

this section in Table II. 

 

3. Proposed routing algorithm 

   In our method called CloDis too, first, the network 

graph is constructed and the community detection 

process is done using CloDises and a community 

detection method such as the modularity method[20]. 

Then, the forwarding decision-making phase acts as a 

community-based way to forward messages. In this 

way, a message is routed according to a global ranking 

of nodes between the communities until it reaches the 

destination community (inter-community routing). It is 

then routed to the destination node based on a local 

ranking of nodes as the intra-community routing. 

   In the community detection process, for every pair of 

nodes i and j, the inverse of the average ICT(i,j) and the 

cumulative CT(i,j) are included to form communities. 

This causes nodes, which see each other sooner, to be 

more likely in a common community, thus possibly 

reducing delivery latency. 

   To rank nodes, a criterion is required to evaluate the 

ability of nodes to forward messages. This criterion 

consists of multiple different social features.  

   Numerous studies have demonstrated that some social 

features do not significantly differ between the nodes 

[4]. In other words, more distinctive criteria are needed 

to rank the nodes. Therefore, it is better to use multiple 

social criteria in the utility function with different and 

dynamic coefficients. These features are further applied 

as the core phase of our utility function as done in [4]. 

The pseudo-code of the Clodis algorithm is represented 

in Algorithm 1. 
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Table II. Summarization of proposed modeling solutions for different routing modes 

Section Solution Class Known Distributions Model Routing 

2.1 Best fitting of unicast (CTYPE1) contacts - -  

𝐶𝑙𝑜𝐷𝑖𝑠𝑖𝑗
𝑡  

 

Unicast 2.2 (i) / 2.3(i) Generalization to constituent distributions 1 

anycast / broadcast 2.2(ii) / 2.3 (ii) Generalization to the same distribution 2 

2.1 Best fitting of unicast (CTYPE1) contacts 3 

2.2 Best fitting of anycast (CTYPE2) contacts - -  

𝐶𝑙𝑜𝐷𝑖𝑠𝑖
𝑡  

 

Anycast 

 
2.2 (i) / 2.3 (i) Generalization from/to constituent distributions 1 

unicast / broadcast 2.2 (ii) / 2.3 (ii) Generalization to the same distribution 2 

2.2 Best fitting of anycast (CTYPE2) contacts 3 

2.3 Best fitting of broadcast (CTYPE3) contacts - -  

𝐶𝑙𝑜𝐷𝑖𝑠𝑡  

 

Broadcast 2.3 (i) Generalization from constituent distributions 1 

unicast / anycast 2.3 (ii) Generalization to the same distribution 2 

2.3 Best fitting of broadcast (CTYPE3) contacts 3 

      

      Algorithm 1: Clodis algorithm 

Begin               

CloDises 

extractDistributionsParameters(contacts) 

 NetworkGraph  extractGraph(CloDises) 
 IAICT inverseOfAverage(ICT) 

 CCT  cumulative(CT) 

 //Communities: a list of sets   

 Communities  

communityDetection(IAICT,CCT)  

 // forwarding stage  
CandidateNodescurrentNode.EncounteredNodes() 

 AbortingProbThreshold  0.5 

 for Candidate : CandidateNodes do 

      //Required time to send message m 

      y  MessageSize(m)/NetworkInterfaceSpeed 
      x1  CurrentContactElapsedTime  

      // X : contact time random variable 
      AbortingProb  P(X - x1 < y)  

      if (AbortingProb < AbortingProbThreshold)  

          if (CommunityOf(currentNode) ==        

              CommunityOf(destination))  

                 if ()CommunityOf(Candidate) ==    

                     CommunityOf(destination)( and 

                     (IntraCommunityRankOf(Candidate) 

>        

                     

IntraCommunityRankOf(currentNode))  

                             SendMessageTo(m,Candidate) 

          else if ()CommunityOf(Candidate) ==    

              CommunityOf(destination)( or 

                    (InterCommunityRankOf(Candidate) 

>      

                     

InterCommunityRankOf(currentNode))  

                             SendMessageTo(m,Candidate) 

 end for 

end. 

 

   In the Algorithm-1, we used the same framework 

presented in our previous work [29] to detect the 

communities. To calculate IntraCommunityRankOf(i) 

and InterCommunityRankOf(i) for every nodes i and 

destination d, we use the following equation:         

  w1*similarity(i,d) + w2*centrality(i) + w3*trust(i)     

  w4*friendship(i, d) + w5*social_strength(i)   
(11) 

where w1 to w5 are dynamic coefficients. If the nodes 

belong to a common community, the metric 

IntraCommunityRankOf is used as the local ranking and 

so the social features of nodes of the community are 

used to calculate that metric.  In cases that nodes are in 

distinct communities, InterCommunityRankOf is  

 

used as the global ranking and calculated using social 

features of the whole network nodes. 

   For every candidate node, we define a prerequisite 

phase to select it as the possible relay node by 

influencing the contact distribution parameters of that 

node as follows. 

   Using CloDis, we calculate the probability of whether 

the message can be completely sent in the remaining of 

the current contact time or not. If the aborting 

probability exceeds a threshold, sending the message to 

the candidate node will not be examined. This technique 

prevents the incomplete sending of messages due to 

insufficient contact time and thus reduces the aborted 

messages. Consequently, network costs can be 

significantly decreased as well.  

 

4. Simulations and results 

   In this section, our method is compared to some well-

known routing methods. The software ONE [21] is used 

as the simulator. It is based on Java programming 

language and implements some popular routing 

protocols such as Epidemic [22]. In addition to artificial 

movement models, it supports any real traces e.g. 

Infocom05 [23], MIT Reality Mining [24]. 

 

4.1. Comparing protocols 

   The conventional method for showing the efficiency 

of an algorithm, model, or framework is to implement it 

in a simulation environment and compare the results 

with benchmark protocols in that field. Among various 

algorithms, the following protocols were employed.  

  Epidemic [22] is a knowledgeless and blind method 

that uses the flood spreading of messages in routing. It 

causes messages to reach their destination in the shortest 

possible time with the highest delivery rate when there 

is enough memory. Instead, it can produce the highest 

overhead.  
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  DR [4] is a social-aware algorithm that utilizes 

communities and a utility function consisting of several 

social features.  

 TCCB [26] uses predicted temporal social contact 

patterns including temporal closeness and centrality in 

data forwarding. 

 

4.2. Datasets 
   The following three real network traces are used for 

experiments. These networks are used in studies to 

evaluate the performance of MSN solutions. 

  Infocom05 trace was collected at the INFOCOM 2005 

conference for three days using small portable electronic 

devices equipped with Bluetooth. About 41 people from 

different countries took part in it. 

  MIT Reality Mining is a real and long trace with 

duration of approximately one year which makes it 

highly suitable for evaluating the mobility of MSN 

nodes over a long period. In this trace, near 97 students 

and staff of the University of MIT have participated 

using Bluetooth-enabled smartphones. 

  Infocom06 trace was recorded at the INFOCOM 2006 

conference via Bluetooth-enabled devices participating 

about 98 people in three days. 
 

4.3. Performance metrics 

   The following metrics are used to evaluate the 

methods. 

  Average Overhead: The ratio of the number of relayed 

messages to the number of delivered messages. 

  Average delivery Latency: The average time elapsed 

between the generation of messages and their delivery 

to the destinations. 

  Delivery Rate: The ratio of delivered messages to the 

total number of generated messages. 
 

4.4. Simulation setup 

   In the experiments, in our method, a day is divided into 

5 time periods, including the intervals of 8-12, 12-14, 

14-18, 18-24, and 0-8. The Modularity method is 

applied for community detection with resolution 

parameters as 1. Moreover, aborting probability 

threshold is set to 0.5, as a tradeoff between delivery rate 

and latency. For TCCB, the suggested intervals of a day 

are used including 0-4, 4-8, 8-12, 12-16, 16-20, and 20-

24. The parameters g and w are set to 0.8 and 0.5, 

respectively. We use the Recent Weighted Method 

(RWM) as the prediction method. In DR, the features 

similarity, trust, and the like are used with the same 

scenarios and dynamically adjusted coefficients. 

    

 

 

(a) 

 

(b) 

 

(c) 

Fig. 1. Comparing methods over time constraints for 

Infocom06 trace. (a) Overhead Ratio, (b) Average 

Latency, (c) Delivery Rate 

 

   Two sets of experiments are conducted in two 

different scenarios. First, the results are obtained by 

varying the time. In the second set, the effect of traffic 

loads is investigated by varying the buffer space. It is 

noteworthy that the effect of other parameters such as 

time to live (TTL) of messages can also be examined 

through the changes made in their values. For 

investigated traces, the variables in TABLE III are used 

in the first set of experiments. 

 

TABLE III. Variables setting for the traces in the 

time constraints test (s: seconds) 

Parameters Infocom06 MIT Infocom05 

Simulation time 342916 2.5 months 274884s 

Warm-up  114,305s 4 weeks 91,628s 

Update interval 0.2s 10s 0.2s 

Device buffer  600MB 500MB 500 MB 

Messages TTL 18 hours 12 days 1 day 

Messages 

interval 
50-100s 600-1800s 50-100s 

   

 For the second set of experiments, the buffer size 

variable is changed from 20 to 1200 (MB), 10 to 530 

(MB), and 10 to 1250 (MB) in Infocom06, MIT, and 

Infocom05 traces, respectively. 
 

4.5. Simulation results 

   In the experiments letters h, d, w, and m represent 

hour, day, week, and month respectively.  
 

4.5.1. Impact of the time constraints 

   Fig. 1 illustrates the results of the variable time for the 

Infocom06 trace. It can be observed that CloDis 

outperforms TCCB and DR in all criteria, and the 

Epidemic in terms of the overhead ratio. Fig. 1(a) shows 

that CloDis acts better than Epidemic, TCCB, and DR, 

respectively, about 2.8-times, 27%, and 48% in terms of 

overhead ratio. It improves average latency and delivery 

rate, , by an average of 6.5% and 4.6%, as well as 5% 
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and 4% respectively compared to TCCB and DR as 

depicted in Figs. 1 (b) and (c). The results of the variable 

time for MIT trace are presented in Fig. 2. As shown in 

Fig.2 (a), CloDis works better than all methods in terms 

of overhead ratio and improves Epidemic, TCCB, and 

DR by an average of approximately 5-times, 33%, and 

41%, respectively. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 2. Comparing methods over time constraints for 

MIT trace. (a) Overhead Ratio, (b) Average Latency, 

(c) Delivery Rate 
 

According to Figs. 2 (b) and (c), CloDis improves 

TCCB and DR by about 7.5% and 5% in average 

latency, as well as 5.3% and 5% in terms of delivery 

rate, respectively.  

   Based on the results, our improvement in terms of 

overhead is extremely higher than other criteria, 

especially in contrast to the Epidemic method.  
 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. Comparing methods over time constraints for 

Infocom05 trace. (a) Overhead Ratio, (b) Average 

Latency, (c) Delivery Rate 

    
   Fig. 3 illustrates results with the time variable for the 

Infocom05 trace. Fig. 3(a) shows that CloDis works 

better about 3-times, 30%, and 50%, respectively, 

compared to Epidemic, TCCB, and DR in terms of 

overhead ratio. Our method improves the average 

latency and delivery rate, respectively, by an average of 

8.5% and 7.6%, as well as 7% and 5.7% compared to 

TCCB and DR depicted in Figs. 3 (b) and (c). 

 
4.5.2. Impact of the buffer space constraints 

   The results of the comparing methods in different 

buffer spaces for all traces are illustrated in Figs. 4-6. 
As shown in Figs. 4 (c), 5 (c), and 6 (c), increasing the 

buffer size improves the network delivery rate. The 

reason is that the messages can stay longer time in 

memory and have more opportunities to be delivered to 

the destination before their removal. On the other hand, 

increasing the buffer space reduces the overhead as 

shown in Figs. 4 (a), 5 (a), and 6 (a). The reason is 

obvious because the overhead is inversely related to the 

delivery rate and increasing the delivery rate reduces the 

number of sent messages. It is known that the number of 

forwards is correlated with overhead. Thus, the 

overhead represents a significant reduction. 

   In the case of average latency (Figs. 4 (b), 5 (b), and 6 

(b)), by the initial increase of the buffer, the latency 

increases relatively, but then decreases and remains 

constant to a certain extent. The reason for the initial 

increase is that the messages gradually remain in the 

memory longer, and therefore, increase the delivery 

latency since the delivery latency is calculated for the 

delivered messages rather than all created messages. 

However, it reduces delivery latency by the continuation 

of this process because the delivery rate demonstrates an 

increase. 
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(a) 

 

(b) 

 

(c) 

Fig. 4. Comparing methods over buffer constraints for 

Infocom06 trace. (a) Overhead Ratio, (b) Average 

Latency, (c) Delivery Rate. 

 

   On the other hand, the Epidemic having sufficient 

memory acts as an upper bound on the delivery rate 

(Figs. 1 (c) and 3 (c)). However, this method shows less 

efficiency in low memory. For example, in the above 

experiments, this method works worse when the 

memory is reduced from 300 to 200 in Infocom06, 400 

to 300 in MIT, and 500 to 400 in Infocom05. 

Simultaneously, this method has a higher overhead and 

less delay in most cases. 

   Finally, similar to the first set of experiments, the 

superiority of our method in improving network criteria 

compared to other methods is maintained by changing 

the variable of buffer space. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. Comparing methods over buffer constraints for 

MIT trace. (a) Overhead Ratio, (b) Average Latency,  

(c) Delivery Rate. 

 

5. Conclusions and future works 

   To the best of our knowledge, no study has so far 

addressed modeling the homogeneous distribution 

function of node’s contact types and exploiting them 

proportionally in various routing modes. We modeled 

various contact types with the distribution function of 

the sums of several random variables. In this regard, it 

was proven that the generalizations and methods of their 

use in different modes of routing in the existing 

literature have fundamental problems. Therefore, a 

complete model (i.e., CloDis) was presented for 

maintaining the contact information. Using this 

criterion, it is possible to calculate different probabilities 

for the occurrence of each contact time and inter-contact 

time and theirs remaining part-time.     Accordingly, we 

could prevent unsuccessful transmissions and reduce 

overhead in the proposed routing algorithm. 

Additionally, the overhead was improved by the CloDis 

compared to the three strategies Epidemic, TCCB, and 

DR, as well as the delivery rate and average latency 

compared to the last two protocols. 

 

 

(a) 
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(b) 

 

(c) 

Fig. 6. Comparing methods over buffer constraints for 

Infocom05 trace. (a) Overhead Ratio, (b) Average 

Latency, (c) Delivery Rate. 

 

   The implication of the proposed ideas on reducing 

energy consumption and increasing network lifetime can 

be evaluated through a cross-layer approach. There are 

more challenges about contacts distribution modeling 

that we will address in future works. We will examine 

the improvement of community detection algorithms and 

their modeling, as well as community-independent 

routing methods using presented solutions. 
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