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Abstract 

Non-cooperative intelligent control agents (ICAs) with dedicated cost functions, can lead the system to poor 

performance and in some cases, closed-loop instability. A robust solution to this challenge is to place the ICAs at the 

feedback Nash equilibrium point (FNEP) of the differential game between them. This paper introduces the designation 

of a robust decentralized infinite horizon LQR control system based on the FNEP for a linear time-invariant system. For 

this purpose, two control strategies are defined. The first one is a centralized infinite horizon LQR (CIHLQR) problem 

(i.e. a supervisory problem), and the second one is a decentralized control problem (i.e. an infinite horizon linear-quadratic 

differential game). Then, while examining the optimal solution of each of the above strategies on the performance of the 

other, the necessary and sufficient conditions for the equivalence of the two problems are presented. In the absence of the 

conditions, by using the least-squares error criterion, an approximated CIHLQR controller is presented. It is shown that 

the theorems could be extended from a two-agent control system to a multi-agent system. Finally, the results are evaluated 

using the simulation results of a Two-Area non-reheat power system. 

Keywords 
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1. Introduction 

Linear-quadratic regulation (LQR) problem and its 

related optimal state feedback controller have been well 

explored in reference books and literary works in 

continuous and discrete-time linear systems [1, 2]. This 

controller recommends optimal, stabilizing, and robust 

control inputs in the form of a gained state feedback by 

optimizing a quadratic performance index and solving a 

Riccati equation.  

The LQR achieves infinite gain margin and a 

guaranteed ∓60°  phase margin in each input channel 

independently and simultaneously. These properties are in 

agreement with the practical guidelines for control system 

design and make this controller a recommended robust 

controller implemented in linear systems with parametric 

uncertainties [3]. For example, The LQR controllers have 

been successfully implemented for a large number of 

complex systems such as the unmanned bicycle robot [4], 

load frequency control of interconnected power systems 

[5], Unmanned aerial vehicles (UAVs) [6, 7], and aircraft 

[8]. Nevertheless, in cases where the controller is used to 

control a nonlinear system, the characteristics of stability, 

optimality, and robustness should be reconsidered [6, 9, 

10].  

In an LQR controller designation stage, determination 

of the weighting matrices, matrices Q and R, is the key 

issue that directly affects the control action. Therefore, the 

development of new methods for autotuning the 

weighting matrices has been considered by researchers. 

Some of these methods include sensitivity-based methods 

[11], adaptive methods [6], evolutionary techniques [7], 

metaheuristic optimization algorithms [12], and 

correlation analysis [13].  

In the implementation stage, the selected proper 

control structure has an important role in the real 

efficiency of the controller. This is especially true for 

large-scale or coupled linear systems that do not use a 

centralized control structure to implement the controller 

or in multi-agent systems [14]. 

Centralized, decentralized, and distributed control are 

three main structures in large-scale control systems. 

However, the technical difficulties of implementing a 

centralized control strategy have made the control system 

designers more inclined to use decentralized and 

distributed control structures [15]. In these two structures, 

the control system designer accomplishes the overall 

objectives of the system by assigning control of system 
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inputs to local control systems (LCS) and setting specific 

local objectives for each. 

The question that arises is that when the LCSs have 

internal cost functions, what constraints will the system 

designer have on fulfilling the overall objectives of the 

system? One of the main challenges in answering this 

question will be mentioned when the LCSs have conflicts 

of interest. These challenges have become more objective 

with the advent of smart controllers in industrial areas as 

well as the introduction of free trade policy in managerial 

and macroeconomic debates. In these cases, the system 

inputs are controlled by intelligent control agents (ICAs) 

with different control objectives [16-19]. Therefore, 

behavioral analysis of the control agents seems necessary. 

In interconnected dynamics systems controlled by 

ICAs, the dedicated cost of each agent not only depends 

on its input choice but also on the choice of inputs by the 

other ICAs too. Game theory deals with solving such 

problems as a game.  

Nash’s papers have presented robust solutions for the 

games with non-cooperative ICAs [20, 21]. In these 

games, the agents do not cooperate or share their control 

information and strategy. 

 Introducing differential games by Isaacs established a 

deep link between the topics of optimal control and game 

theory [22]. In the meantime, linear quadratic differential 

games (LQDGs) have been favored by more engineers 

and researchers in the areas of optimization and control 

due to the linear dynamics of the game environment and 

quadratic form of the agents’ cost functions as well as the 

simpler solution. 

 The non-cooperative solutions of an LQDG (i.e. the 

Nash equilibrium points) depend on solving the coupled 

algebraic Riccati equations (AREs) of the game [23]. 

Therefore, in some studies, necessary and sufficient 

conditions for the existence of the solutions and 

determination of them have been investigated. In recent 

years, some online and offline methods have been 

proposed to calculate Nash equilibrium points of zero and 

non-zero-sum games. These methods include numerical 

methods [24], adaptive dynamic programming [25], 

reinforcement learning [26], and extremum seeking 

control [27]. If the number of ICAs increases or some 

isolated games connect and form a networked game, the 

computational complexity of determining the equilibrium 

points increases exponentially.   

This paper deals with the design of a robust 

decentralized infinite horizon LQR (IHLQR) controller 

based on the FNEP of an infinite horizon LQDG 

(IHLQDG). This design is a flexible design against the 

change of the LQR controller implementation method 

from single-agent centralized mode (i.e. a centralized 

IHLQR (CIHLQR)) to intelligent multi-agent 

decentralized mode with individual cost functions and 

non-cooperative behavior. 

The next sections of this paper are organized as follows. 

Section 2 addresses the problem motivation and 

formulation by introducing two different strategies for 

controlling a linear time-invariant (LTI) system. The first 

strategy is using a CIHLQR derived from the optimal 

solution of a supervisory problem. The second one is a 

decentralized non-cooperative agent-based controller in 

the form of a feedback Nash IHLQDG. The effects of 

using each of these controllers on the cost of the 

supervisor and the agents are discussed. Section 3 

provides a solution for designing an IHLQR controller 

based on the LFNE of a two-agent IHLQDG and then the 

results extend for a multi-agent problem. Section 4 deals 

with a numerical example of a Two-Area power system to 

illustrate the effectiveness of the proposed method. 

Conclusions are provided in Section 5. 

 

2.  Problem Formulation  

Consider an LTI system with two control input vectors: 

𝒙̇(t) = 𝐀𝒙(t) + 𝐁𝒖(t),  𝒙(t0) = 𝒙𝟎                              (1) 
where  x (t) ∈ℝn , u(t)∈ℝm, and x0  are state vectors, 

input vector, and initial conditions of the system, 

respectively. Input vector u(t)  consists of two vectors 

u1(t) controlled by agent 1 and u2(t) controlled by agent 

2 such that  u(t)=[u1
T(t) u2

T(t)]T. Also system matrix A 

and input matrix B = [B1 B2] are constant matrices of 

appropriate dimensions where Bu(t) = B1u1(t) +
B2u2(t). 

      Suppose that three cost functions are defined in the 

system as follows: 

  𝐽 = ∫ (𝒙𝑇(𝒕)𝐐𝒙(𝑡) + 𝒖𝑇(𝒕)𝐑𝒖(𝑡))𝑑𝑡
∞

𝑡0

                      (2) 

𝐽1 = ∫ (𝒙𝑇(𝒕)𝐐𝟏𝒙(𝑡) + 𝒖𝟏
𝑇(𝒕)𝐑𝟏𝟏𝒖𝟏(𝑡) + 𝒖𝟐

𝑇(𝒕)𝐑𝟏𝟐𝒖𝟐(𝑡))𝑑𝑡
∞

𝑡0

(3𝑎) 

𝐽
2
= ∫ (𝒙𝑇(𝒕)𝐐

𝟐
𝒙(𝑡) + 𝒖𝟐

𝑇(𝒕)𝐑𝟐𝟐𝒖𝟐(𝑡) + 𝒖𝟏
𝑇(𝒕)𝐑𝟐𝟏𝒖𝟏(𝑡)) 𝑑𝑡

∞

𝑡0

(3𝑏) 

where the weighting matrices Q ≥0, R>0, Q
i
 ≥0, 

Rii>0  and Rij ≥0, i,j=1,2, i≠j    are symmetric and cost 

functions (2), (3a), and (3b) are the cost functions of a 

supervisor, agent 1, and agent 2, respectively. 

Assumption 1: (A, B, √Q), (A, B1, √Q
1
) and (A, B2, 

√Q
2
) are stabilizable and detectable. 

Definition 1: An intelligent agent is an agent that aims 

to minimize its cost function. 

Assumption 2: Agents 1 and 2 are intelligent with non-

cooperative behavior. 

Definition 2: The supervisory Problem is defined as 

CIHLQR problem (1) and (2) and the agents’ problem is 

defined as IHLQDG (1), (3a), and (3b). 

Definition 3: Optimality in the sense of supervisor is the 

optimal solution to the CIHLQR  problem (1) and (2).  

According to Assumption 1, Since (A, B, √Q)  are 

stabilizable and detectable, the optimal solution for the 

supervisory problem can be calculated as follows: 

𝒖𝑳𝑸(t) = −𝐑
−𝟏𝐁𝐓𝐏𝒙(t)                                                   (4) 

where P is the symmetric stabilizing solution of the 

following algebraic Riccati equation(ARE) 

−𝐏𝐀 − 𝐀𝐓𝐏 + 𝐏𝐒𝐏 − 𝐐 = 𝟎                                           (5)
while 𝑆 = BR−1BT.  

In this case, the optimal cost of the supervisor can be 

determined by  

𝐽𝐿𝑄 = 𝒙𝟎
𝑻𝐏𝒙𝟎                                                                        (6) 

By applying the optimal solution (4), the closed-loop 

system (1) is defined as:  
𝒙̇(t) = 𝐀𝐋𝐐𝒙(t),  𝒙(t0) = 𝒙𝟎                                        (7)

where ALQ ≔ A− SP is stable [1]. 

Suppose, given the limitations of implementing 

centralized control for large-scale systems and the need to 

use decentralized or distributed control structures, 
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controlling the inputs (i.e. u1(t) and u2(t)) are assigned to 

agents 1 and 2, respectively. 

 According to Assumption 2 and the theory of 

differential games, the optimality in the sense of agents’ 

game is defined by the following definition: 

Definition 4: Optimality in the sense of agents’ game is 

the stationary linear feedback Nash equilibria (LFNE) of 

IHLQDG (1), (3a), and (3b). 

According to Assumption 1, Since (A, B1, √Q
1
)  and 

(A, B2, √Q
2
)  are stabilizable and detectable, LFNE of 

the agents’ game can be calculated as follows: 

[
𝒖𝟏𝑵(𝑡)

𝒖𝟐𝑵(𝑡)
] = [

−𝐑𝟏𝟏
−1𝐁𝟏

𝐓𝐏𝟏𝒙(t)

−𝐑𝟐𝟐
−1𝐁𝟐

𝐓𝐏𝟐𝒙(t)
]                                            (8) 

where (P1,P2) is the symmetric stabilizing solution of 

the coupled AREs: 

0=-(A-S2P
2
)

T
P𝟏-P𝟏(A-S2P

2
)+P1S

1
P

1
-Q

1
-P2S

21
P

2
(9 a) 

0=-(A-S1P1)
TP2-P2(A-S1P1)+P2S2P2-Q

2
-P1S12P1 (9 b) 

while Si = BiRii
−1Bi

T , Sij = BiRii
−1RjiRii

−1Bi
T , 

i,j=1,2 and i≠j. the cost of the agent i in the LFNE (8) is 

determined by 

𝐽𝑖𝑁 = 𝒙𝟎
𝑻𝐏𝐢𝒙𝟎, 𝑖 = 1,2                                                      (10) 

and the closed-loop system (1) after applying the 

optimal Nash solution (8) is as follows: 
𝒙̇(t) = 𝐀𝐋𝐐𝒙(t),  𝒙(t0) = 𝒙𝟎                                         (11) 

where AN ≔ 𝐴 − S1P1 − S2P2 is stable [28]. 

Remark 1: As can be seen, the determination of LFNE 

(8) is tied to the solution of the coupled AREs (9).  

Li and Gajic in [29] proved that if  (A, B1, √Q
1
) and (A, 

B2, √Q
2
) are stabilizable and detectable, then there exist 

unique positive semidefinite solutions for the coupled 

AREs (9). 

Definition 5: The supervisory problem (1) and (2) and 

the agents’ problem (1), (3a), and (3b) are equivalent if 

and only if the optimal solution of two problems be equal 

(i.e. uLQ=[u1N
T u2N

T ]T). 

Block diagrams of the system (1) in the supervisory-

based and agent-based control structures are shown in Fig. 

1. In Fig. 1(a), the system inputs are controlled by the 

agents. So the cost of the supervisor depends on the 

agents’ actions. However, in Fig. 1(b), the supervisor 

governs the inputs and the agents should implement what 

the supervisor determined. 

 
Fig. 1: Block diagram of the control system structures. 

(a) agent-based control system (b) supervisor-based 

control system. 

 

In the following, two theorems are presented to examine 

the effect of LFNE (8) on the supervisor cost (2) and, the 

effect of LQR optimal action (4) on the agents’ cost (3a) 

and (3b). 

Theorem 1: Consider IHLQDG (1) with cost functions 

(3a) and (3b). At LFNE (8), the supervisor cost (2) is 

determined as follows: 

𝐽𝑁 ≔ 𝐽(𝑥0, 𝐅) = 𝒙𝟎
𝑻𝐏𝐍𝒙𝟎                                              (12) 

where 𝐅 = [
𝐑𝟏𝟏
−𝟏𝐁𝟏

𝐓𝐏𝟏
𝐑𝟐𝟐
−𝟏𝐁𝟐

𝐓𝐏𝟐
]  and PN  is obtained from the 

Lyapunov equation 

−(𝑸 + 𝑭𝑻𝑹𝑭) = 𝑨𝑵
𝑻𝑷𝑵 + 𝑷𝑵𝑨𝑵 ∙                                (13) 

Proof: If the agents place in LFNE (8), the control input 

u(t) could be written as 

𝒖(𝑡) = [
𝒖𝟏𝑵(𝑡)

𝒖𝟐𝑵(𝑡)
] = [

−𝐑𝟏𝟏
−1𝐁𝟏

𝐓𝐏𝟏𝒙(t)

−𝐑𝟐𝟐
−1𝐁𝟐

𝐓𝐏𝟐𝒙(t)
] =                   

                                    − [
𝐑𝟏𝟏
−1𝐁𝟏

𝐓𝐏𝟏
𝐑𝟐𝟐
−1𝐁𝟐

𝐓𝐏𝟐
] 𝒙(𝑡) = −𝐅𝒙(𝑡)   (14)

 

where (P1,P2)  is a symmetric stabilizing solution of 

coupled AREs (9). Therefore, the supervisor’s cost 

function (2) can be written as  

𝐽(𝒙𝟎, 𝐅) = ∫ 𝒙𝐓(𝑡)(𝐐 + 𝐅𝐓𝐑𝐅)𝒙(𝑡)𝑑𝑡
∞

t0

                    (15) 

where 𝐅 = [
𝐑𝟏𝟏
−𝟏𝐁𝟏

𝐓𝐏𝟏
𝐑𝟐𝟐
−𝟏𝐁𝟐

𝐓𝐏𝟐
]. Since the closed-loop system 

(11) is stable, the state vector x(t) can be written as  

𝒙(𝑡) = 𝒙𝟎𝒆
AN(t−𝒕𝟎)                                                           (16) 

Hence, Eq. (15) could be rewritten as follows: 
𝐽(𝒙0, 𝑭) =                                                                                     

𝒙𝟎
𝑻 (∫ (𝑒𝑨𝑵(𝑡−𝑡0))

𝑇
(𝑸 + 𝑭𝑻𝑹𝑭)𝑒𝑨𝑵(𝑡−𝑡0) 𝑑𝑡

∞

𝑡0

)𝒙𝟎          (17)
 

By defining  PN = ∫ (eAN(t−t0))T(Q +
∞

𝑡0

FTRF)eAN(t−t0) 𝑑𝑡, Eq. (17) can be rewritten as: 

𝐽(𝒙𝟎, 𝐅) = 𝒙𝟎
𝑻𝐏𝐍𝒙𝟎 ∙ 

Since AN is stable, we have 

𝟎 − (𝐐 + 𝐅𝐓𝐑𝐅)
=                                                                                               

∫
𝐝

𝐝𝐭
{(𝐞𝐀𝐍(t−t0))

𝐓
(𝐐 + 𝐅𝐓𝐑𝐅)𝐞𝐀𝐍(t−t0)}  𝐝𝐭 

                                              

∞

𝐭𝟎

 

               = ∫ {𝐀𝐍
𝐓(𝐞𝐀𝐍(t−t0))

𝐓
(𝐐 + 𝐅𝐓𝐑𝐅)𝐞𝐀𝐍(t−t0)

∞

𝐭𝟎

+ (𝐞𝐀𝐍(𝐭−𝐭𝟎))
𝐓
(𝐐

+ 𝐅𝐓𝐑𝐅)𝐞𝐀𝐍(t−t0)𝐀𝐍} 𝐝𝐭  

= 𝐀𝐍
𝐓𝐏𝐍 + 𝐏𝐍𝐀𝐍. 

Theorem 2: Consider CIHLQR problems (1) and (2). If 

the supervisor’s optimal solution (4) is applied to the 

system (1), then agents’ costs (3a) and (3b) are calculated 

as follows: 

𝐽𝑖𝐿𝑄 = 𝐽𝑖(𝒙𝟎, 𝐊) = 𝒙𝟎
𝑻𝐏𝐢𝐋𝐐𝒙𝟎, 𝑖 = 1,2                         (18) 

where JiLQ is the agent i’s cost, 𝐾 = R−1BT𝑃 and PiLQis 

the solution of the Lyapunov equation 

𝐀𝐋𝐐
𝐓𝐏𝐢𝐋𝐐 + 𝐏𝐢𝐋𝐐𝐀𝐋𝐐 = −(𝐐𝐢 + 𝐏

𝐓𝐒𝐢𝐋𝐐P)                 (19) 

while 𝐀𝐋𝐐 ≔ 𝐀−𝐁𝐑−𝟏𝐁𝐓𝐏   and 

SiLQ=BR-1 [
Rii 0

0 Rij
]R-1BT , i,j=1,2  and i≠j. 
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Proof: Agent i’s cost function could be rewritten as 

follows: 

𝐽𝑖𝐿𝑄 = 𝐽𝑖(𝒙0, K)= 

∫ (𝒙T(𝑡)Q
i
𝒙(t)+ [

𝒖𝟏(𝑡)

𝒖𝟐(𝑡)
]

T

[
𝐑𝐢𝐢 𝟎
𝟎 𝐑𝐢𝐣

] [
𝒖𝟏(𝑡)

𝒖𝟐(𝑡)
]) dt

∞

t0

= 

= 

∫ (𝒙T(𝑡)Q
i
𝒙(t)+(-𝐑−𝟏𝐁𝐓𝐏𝒙(t))T [

Rii 0

0 Rij
] (-

∞

t0

R-1BTP𝒙(t))) dt 

= ∫ 𝒙T(𝑡)(Q
i
+P BR-1 [

Rii 0

0 Rij
]R-1BT

⏟              
SiLQ

P)𝒙(t) dt
∞

t0

,𝑖, 𝑗 = 1,2  𝑎𝑛𝑑 𝑖 ≠ 𝑗 (20)

 

Since the closed-loop system (7) is stable, the state 

vector x(t) can be written as 

𝒙(𝑡) = 𝒙𝟎𝒆
𝑨𝑳𝑸(𝑡−𝑡0)                                                          (21)

Hence, Eq. (20) could be rewritten as follows: 
𝐽𝑖𝐿𝑄(𝒙𝟎, 𝑷) =                                                                                            

𝑥0
𝑇 ∫ (𝒆𝑨𝑳𝑸(𝑡−𝑡0))

𝑻
(𝑸𝟏 + 𝑷𝑺𝒊𝑳𝑸𝑷)𝒆

𝑨𝑳𝑸(𝑡−𝑡0) 𝑑𝑡
∞

𝑡0
𝑥0

                                                                                , 𝑖 = 1,2           (22)

Assume PiLQ=∫ (eALQ(t-t0))
T

(Q
i
+PSiLQP)eALQ(t-t0) dt 

∞

t0
, i=1,2 

, so 𝐽𝑖(𝒙0, 𝐊) = 𝒙𝟎
𝑻𝐏𝑖𝐋𝐐𝒙𝟎 , 𝑖 = 1,2  and since ALQ  is 

stable, similar to the proof of theorem 1, it could be 

written 

−(𝐐 + 𝐏𝐒𝐢𝐏) = 𝐀𝐋𝐐
𝐓𝐏𝐢𝐋𝐐 + 𝐏𝐢𝐋𝐐𝐀𝐋𝐐 , 𝑖 = 1,2.  

Remark 2: Since the supervisor’s optimal cost (6) is the 

minimum cost of supervisor for all of linear state feedback 

strategies, then it could be claimed that the supervisor's 

cost never decreases at the LFNE of the game (1), (3a) and 

(3b). So  
JLQ≤JN ∙ (23) 

According to Remark 2, by changing the control 

strategy of the system (1) from a CIHLQR control to a 

non-cooperative intelligent agent-based control, the 

system policy designer should have expected more cost 

for the supervisor. On the other hand, it cannot be said 

with certainty that if the optimal centralized LQR 

controller derives the inputs (Fig. 1(a)), the cost of the 

agents will necessarily increase. So a question arises 

whether the agents could be replaced by an optimal 

CIHLQR controller that fully tracks their behaviors. One 

of the results of answering the question is finding a 

simpler and more well-known model (i.e. a CIHLQR 

model), as an alternate for the feedback Nash IHLQDG 

problem. Another result is the ability to design a Nash-

based LQR controller in the systems where the control 

inputs are governed by intelligent non-cooperative agent-

based systems. The next section discusses this question. 

 

3. Controller Design: An LQR Approach 

In this section, the designation of a robust decentralized 

infinite horizon LQR (IHLQR) controller based on the 

FNEP of an infinite horizon LQDG (IHLQDG) is 

discussed. To that end, we present an LQR approach to 

model a feedback Nash IHLQDG. For this purpose, at 

first, necessary and sufficient conditions for LQR 

modeling of a feedback Nash IHLQDG are examined and 

if there is not any fully compatible model, an LSE method 

for finding the closest LQR model is provided.  

 

3.1 Feedback Nash IHLQDG Modeling: Alternate LQR 

Problem Design  

Consider IHLQDG (1), (3a), and (3b) and CIHLQR 

problem (1) and (2). the problem is how to replace the two 

non-cooperative intelligent agent-based controllers with 

one centralized Linear quadratic regulator, where the state 

response of the system (1) be equal or closely equal to the 

Nash equilibrium behavior of the game. 

Suppose that Q (i.e. states’ weighting matrix of the cost 

function (2)) is recommended by the supervisor. The 

following theorem defines the conditions of existence of 

the alternate CIHLQR problem. 

Theorem 3: The feedback Nash IHLQDG game (1), 

(3a), and (3b) is equivalent to LQR problem (1) and (2) 

assuming the recommended Q matrix, if and only if the 

following conditions hold: 

(a) vec(-Q) is at the null space of 

              (AT⨁AN
T )

−1
− (AN

T⨁AT)
−1

 

 where vec(.) and ⊕  are vectorization of a 

matrix and Kronecker sum operator, 

respectively. 

       (b) AN + A  is stable.  

(c) Weighting matrix R is determined as a symmetric 

positive definite solution of the 
𝑹−𝟏 = 𝑭𝑷−𝟏(𝑩𝑻)+                                           (24)

where F= [
R11

-1 B1
TP1

R22
-1 B2

TP2

]  and (∙)+  is the Moore-Penrose 

inverse operator and P is the solution of the Lyapunov 

equation  

(𝑨𝑵 + 𝑨)
𝑻𝑷 + 𝑷(𝑨𝑵 + 𝑨) = −𝟐𝑸 ∙ (25) 

Proof of necessity: If the optimal LQR solution (4) is 

equal to the LFNE (8), then the closed-forms of the system 

(1) after applying LFNE (8) and the LQR solution (4) are 

equal, so ALQ = AN . Therefore, ARE (5) could be 

rewritten as a Sylvester Equation 

𝑨𝑵
𝑻𝑷 + 𝑷𝑨 = −𝑸                                                              (26) 
Since P should be symmetric and Q is symmetric too, 

transposing the Eq. (26) yields the result  

𝑨𝑻𝑷 + 𝑷𝑨𝑵 = −𝑸 ∙                                                           (27) 
On the other hand, the Kronecker forms of Eqs. (26) and 

(27) are [30]: 

  {
(𝑨𝑻⨁𝑨𝑵

𝑻 )𝒗𝒆𝒄(𝑷) = 𝒗𝒆𝒄(−𝑸)

(𝑨𝑵
𝑻⨁𝑨𝑻)𝒗𝒆𝒄(𝑷) = 𝒗𝒆𝒄(−𝑸)

                                    (28) 

So {
vec(P)=(AT⨁AN

T )
-1

vec(-Q)

vec(P)=(AN
T⨁AT)

-1
vec(-Q)

 , thus if there is any P 

as the solution of Eqs. (26) and (27), vec(-Q) should be in 

the null space of ((AT⨁AN
T )

-1
-(AN

T⨁AT)
-1
). 

On the other hand, by summing up the sides of Eqs. (26) 

and (27), it follows that 

(𝐀𝐍 + 𝐀)
𝐓𝐏 + 𝐏(𝐀𝐍 + 𝐀) = −𝟐𝐐                    (29) 

If AN + 𝐴  is stable, the Lyapunov Eq. (29) has a 

symmetric positive definite (PD) solution for P. If 

condition (a) holds, then the PD solution of Eq. (29) 

satisfies Eq. (26). Consequently, the R matrix of the LQR 

problem could be determined by using the fact that 

uLQ(𝑡) = [
u1N(𝑡)

u2N(𝑡)
] , therefore R−1BT𝑃 = [

R11
−1B1

TP1
R22
−1B2

TP2
]  or 
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R−1 = [
R11
−1B1

TP1
R22
−1B2

TP2
] (BTP)+ = FP-1(BT)

+
 , where uLQ(𝑡) , 

u1N(t). and u2N(𝑡) are LQR control input and feedback 

Nash control input of agent 1 and agent 2, respectively. 

Proof of sufficiency: If conditions (a) to (c) are met, a 

sufficient condition can be easily met by reversing the 

necessary condition proof procedure. 

 

3.2 Feedback Nash IHLQDG Modeling: Approximate 

LQR Problem Design 

If the recommended Q does not satisfy the condition (a) 

in Theorem 3, new Q (i.e. QLS ), could be determined 

based on the least square error (LSE) criterion.  

Algorithm1 provides the method of determining the 

alternative approximated CIHLQR for IHLQDG (1), (3a), 

and (3b). This algorithm has been extracted from the proof 

of Theorem 3. 

Algorithm 1: Least Square Error approximation for 

the alternative CIHLQR Problem when the supervisor 

has a recommended Q. 

Step 1: 

----------------------------------------------------------------- 

Determine matrix S where the columns are the unitary 

orthogonal Null space vectors of    

                       (𝐀𝐓⨁𝐀𝐍
𝐓 )

−𝟏
− (𝐀𝐍

𝐓⨁𝐀𝐓)
−𝟏

 

====================================== 

Step 2: 

-------------------------------------------------------------- 

If vec(-Q) is linearly dependent on the column vectors 

of S, then  

                       𝑣𝒆𝒄(𝑷) = (𝐀𝐓⨁𝐀𝐍
𝐓 )

−𝟏
𝒗𝒆𝒄(−𝐐)  

  else if vec(-Q) is linearly independent to S         column 

vectors, at first, find the 𝑄𝐿𝑆matrix by solving the least 

square problem: 

     𝑆 𝑣𝑒𝑐(−𝑄𝐿𝑆) = 𝑣𝑒𝑐(−𝑄)  
Then  

    𝒗𝒆𝒄(𝐏) = (𝐀𝐓⨁𝐀𝐍
𝐓 )

−𝟏
𝒗𝒆𝒄(−𝑸𝑳𝑺) 

====================================== 

Step 3:  

---------------------------------------------------------------- 

The R matrix is calculated as follow: 

                R-1= [
R11

-1 B1
TP1

R22
-1 B2

TP2

]P-1(BT)
+
. 

 

3.3 Generalizing the controller design for n>2 ICAs 

In this section, the design problem for n>2-agents is 

discussed. For this purpose, at first, LFNE of n-agents 

IHLQDG is defined and then the design method is 

developed. 

    Consider system (1) with the cost function of the 

supervisor (2). Suppose that 

u(t)=[u1
T(𝑡) u2

T(𝑡) … un
T(𝑡)]T and  𝐵 =

[B1 B2 … Bn]. So the system dynamic equation (1) 

can be written as  

𝒙̇(𝑡) = 𝐀𝒙(𝑡) +∑𝐁𝑖𝒖𝑖(𝑡)

𝑛

𝑖=1

                                         (30) 

Assume that input ui(t), i=1,…,n is controlled by the ith 

agent and each agent has the following cost function: 

𝐽𝑖 = ∫(𝒙
𝑻𝐐𝒊𝒙 +∑𝒖𝒋

𝑻𝐑𝒊𝒋𝒖𝒋

𝑛

𝑗=1

)𝑑𝑡, 𝑖 = 1,… , 𝑛

∞

0

(31) 

Assumption 3: (A, B,√Q),  (A,Bi, √Qi), i=1,…,n are 

stabilizable and detectable. 

Assumption 4: The agents are non-cooperative intelligent 

players of IHLQDG (30) and (31). 

Optimality in the sense of the supervisor is defined as 

Section 2 and Eqs. (4) -(7). On the other hand, regarding 

Assumptions 3 and 4, the optimality in the sense of the 

agents is defined as stationary linear feedback Nash 

equilibrium (LFNE) point of IHLQDG (30), (31) as 

follows: 

𝒖𝑵
∗ (𝒕) = [𝒖𝟏

∗𝑻(𝒕), 𝒖𝟐
∗𝑻(𝒕),⋯ , 𝒖𝒏

∗𝑻(𝒕)]
𝑻

(32) 

where ui
*(t)=-Rii

-1Bi
TPix, i=1,…,n  and Pi,i=1,…,n  are 

symmetric stabilizing solutions of the set of coupled 

AREs 

(

 
 
𝐀 −∑𝐒𝐣𝐏𝐣

𝐧

𝐣=𝟏
𝐣≠𝐢 )

 
 

𝐓

𝐏𝐢 + 𝐏𝐢

(

 
 
𝐀 −∑𝐒𝐣𝐏𝐣

𝐧

𝐣=𝟏
𝐣≠𝐢 )

 
 
+ 𝐐𝐢 − 𝐏𝐢𝐒𝐢𝐏𝐢 +∑𝐏𝐣𝐒𝐢𝐣𝐏𝐣

𝐧

𝐣=𝟏
𝐣≠𝐢

= 𝟎

, 𝐢, 𝐣 = 𝟏, … , 𝐧

                                                                                                                   (33)

 

where  

𝐒𝐢 ≔ 𝐁𝐢𝐑𝐢𝐢
−𝟏𝐁𝐢

𝐓  and   Sij≔BiRii
-1RjiRii

-1Bi
T  , i,j=1,…,n , i≠j.  

Agent i’s LFNE cost is determined by  

𝐽𝑖𝑁 = 𝒙𝟎
𝑻𝐏𝒊𝒙𝟎, 𝑖 = 1, … , 𝑛                                              (34) 

and the closed-loop system (1) after applying the LFNE 

(32) is as follow: 

𝒙̇ = 𝐀𝐍𝒙,     𝒙(𝒕𝟎) = 𝒙𝟎                                                (35) 

where AN ≔ A− ∑ SiPi
n
i=1   is stable [26]. 

       In generalizing the design problem to multi-agent 

(n>2), as can be seen, the proof presented in Theorem 3 

has the least dependence on the number of agents. 

Therefore, the following proposition can be presented as 

a generalization of Theorem 3. 

Proposition 1: The feedback Nash IHLQDG game (30) 

and (31) is equivalent to LQR problem (1) and (2) 

assuming the recommended Q matrix by the supervisor, if 

and only if the following conditions hold: 

(a) vec(-Q) is at the null space of   

             ((𝐀𝐓⨁𝐀𝐍
𝐓 )

−𝟏
− (𝐀𝐍

𝐓⨁𝐀𝐓)
−𝟏
)  

            where vec(.) and ⊕ are vectorization of a matrix 

 and Kronecker sum operator, respectively. 

(b) 𝐀𝐍 + 𝐀  is stable. 

(c) R is determined as a symmetric positive definite 

solution of the following Equation: 

R-1=FP-1(BT)
+

(36) 

where F=

[
 
 
 
R11

-1 B1
TP1

R22
-1 B𝟐

TP𝟐
⋮

Rnn
-1 B𝒏

TP𝒏]
 
 
 

 and (∙)+  is the Moore-Penrose 

inverse operator and P is the solution of the Lyapunov 

equation  
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(𝐀𝐍 + 𝐀)
𝐓𝐏 + 𝐏(𝐀𝐍 + 𝐀) = −𝟐𝐐 ∙ (37) 

Proof: Proofs of necessity and sufficiency are similar to 

Theorem 3.  

Remark 3: If the recommended Q does not satisfy the 

condition (a) in Proposition 1, an approximated LSE LQR 

supervisory problem could be determined by an algorithm 

similar to Algorithm 1, except Step 3 where the matrix R 

should be determined by Eq. (36). 

 

4. Numerical example: Smart Automatic Generation 

Control design 

In this section, we study the design of optimal 

Automatic Generation Control (AGC) based on linear 

differential game theory for a Two-Area power system 

(TAPS) with non-Reheat Thermal units (Fig. 2). The 

assumption is that each of the areas is controlled by an 

independent and non-cooperative company. To increase 

the reliability and accessibility of electric energy to 

consumers, the power areas are connected by a power line 

known as Tie-Line. Therefore, unwanted changes in each 

area affect the behavior of the system-state variables and 

the companies’ cost functions. A Block diagram of a 

typical non-Reheat TAPS has been shown in Fig. 3. 

 

 
Fig. 2. Non-Reheat TAPS 

 

 
Fig. 3. Block diagram of a typical non-Reheat TAPS   

 

According to Fig. 3, the state-space model of the typical 

non-Reheat TAPS could be determined as follows: 

𝑥̇(t)=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1

TP1

KP1

TP1

0 0 0 0
-KP1

TP1

0 0

0
-1

Tt1

1

Tt1

0 0 0 0 0 0

-1

r1T
g1

0
-1

Tg1

0 0 0 0 0 0

0 0 0
-1

TP2

KP2

TP2

0
KP2

TP2

0 0

0 0 0 0
-1

Tt2

1

Tt2

0 0 0

0 0 0
-1

r2T
g2

0
-1

Tg2

0 0 0

2πT0 0 0 -2πT0 0 0 0 0 0

b1 0 0 0 0 0 1 0 0

0 0 0 b2 0 0 -1 0 0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x(t)+

[
 
 
 
 
 
 
 
 
 
 
 

0 0

0 0
1

Tg1

0

0 0

0 0

0
1

Tg2

0 0

0 0

0 0 ]
 
 
 
 
 
 
 
 
 
 
 

u(t), x0=

[
 
 
 
 
 
 
 
 

1

1

0
-1

0

1
0

0

0 ]
 
 
 
 
 
 
 
 

 

where  

x(t)=[Δf1, ΔPg1,  ΔPt1 
 , Δf2 , ΔPg

2
, ΔPt2 

 , ΔPtie,  Iace1, 

Iace2]
T
and u(t)=[u1(t)  u2(t)]T. 

Assuming i = 1,2 ,  ∆fi(t) , ∆Pgi(t) ,  ΔPti  and Iacei 

respectively represent frequency deviation, variations in 

governor position output, variations in turbine mechanical 

output deviation, Area Control Error signal (ACE) 

integral in the 𝑖th control area and  ΔPtie(t) is variations in 

power exchange between two power areas through Tie-

line.  

 Suppose that the system parameters and the weighting 

matrices of cost functions for the commissioner (i.e. the 

supervisor) and the companies (i.e. the non-cooperative 

intelligent control agents) are defined as follows: 

Tg1=Tg2=0.08 s , Tt1=Tt2=4 s,TP1=TP2=20s  

KP1=KP2=120
Hz

PuMW
, r1=r2=2.4 

Hz

PuMW
, b1=b2=0.425 

PuMW

Hz
 , T0=0.0707 

MW

rad
 

Q = diag([1000 1 1 1000 1 1 1 1 1])   

 R = [
1 0
0 1

] 

Q1 = diag([10 1 1 0 0 0 10 1 0]),  R1
= 2 

Q2
= diag([0 0 0 100 10 10 10 0 1]) , R2
= 4 

So the commissioner’s optimal CIHLQR solution (4) 

could be determined analytically by  uLQ=-Kx(t) where  

K=-R-1BTP= 

[
30.9112 19.2942 2.1173 0.1613 0.0043 0.0003 -14.1125 1 0

0.1613 0.0043 0.0003 30.9112 19.2942 2.1173 14.1125 0 1
]  

   

The LFNE (8) for the companies could be calculated by 

using the numerical method  presented in [31] as 

[
u1N(t)

u2N(t)
]= [

-R11
-1 B1

TP1x(t)

-R22
-1 B2

TP2x(t)
] = [

-K1Nx(t)

-K2Nx(t)
] 

where 

K1N= 
[1.9727 2.9312 0.6348 0.0036 -0.0712 -0.0078 -1.7076 0.7971 0.1270] 
K2N= 
[0.3879 0.1344 0.0081 4.2254 5.5091 1.3883 6.4201 0.3996 0.5636]

. 

Table I shows the costs of the commissioner and the 

companies in the LFNE and the optimal CIHLQR 

strategies. Theorems 1 and 2 are used to complete the cost 

Table I.  
 

Table I. The Cost of Using LQR and Nash strategies 

CIHLQR LFNE Cost 

330.1313 942.4514 Commissioner as supervisor 

112.5181 13.6643 Company 1 as agent 1 

110.9246 26.5171 Company 2 as agent 2 

 

 The results show that using the LQR strategy will 

optimize the commissioner's cost, but the cost of 

companies increases several times. On the other hand, the 

feedback Nash strategy decreases the cost of companies, 

while increasing sharp the cost of the commissioner and 

reducing the system's performance in the main state 

variables. Figs. 4, 5, and 6 show the control inputs and the 

main state deviations for these design strategies. 
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Fig. 4. Control inputs for CIHLQR and LFNE. (a) Area 

1’s control input, (b) Area 2’s control input. 

 

 
Fig. 5. Deviations of frequency by applying CIHLQR 

and LFNE Strategies. (a) Area 1, (b) Area 2. 

 
Fig. 6. (c) Deviation of power in Tie-Line. 

If the control strategy is changed from a CIHLQR to a 

decentralized agent-based LQR control system, because 

of the self-interest of the companies and non-cooperative 

behavior between them, maybe the TAP becomes 

unstable.  For this reason, designing a robust Nash-based 

CIHLQR not only has properties of the centralized LQR 

controllers but also has the flexibility property for 

changing a centralized controller to a non-cooperative 

decentralized intelligent agent-based controller without 

noticeable in the performance. Thus, the alternate 

CIHLQR of the game is investigated using Algorithm 1.  

Since the Q matrix does not satisfy condition (a) of 

Theorem 3, weighting matrices  Q
LS

 and RLS   are 

calculated using Algorithm 1 as follows: 

=LSQ

[
 
 
 
 
 
 
 
 
724.59 101.7 24.75 19.2 −14.84 14.54 104 −31.56 −67.94
101.7 63.38 62.38 15.16 −17.67 −8.94 29.47 15.32 22.33
24.75 62.38 70.14 −12.86 −26.4 2.21 14.09 −13.75 31.54
19.2 15.16 −12.86 1024.54 −103.78 −36.16 104 83.23 16.28
−14.84 −17.67 −26.4 −103.78 −22.73 −23.73 −5.31 −31.41 8.6
14.54 −8.94 2.21 −36.16 −23.73 103.48 −21.11 −26.76 24.12
104 29.47 14.09 104 −5.31 −21.11 7.79 13.41 6.92

−31.56 15.32 −13.75 83.23 −31.14 −26.76 13.41 97 24.48
−67.96 22.33 31.54 16.28 8.6 24.12 6.92 24.48 15.69 ]

 
 
 
 
 
 
 
 

 

 RLS=[
140.35 1.9
1.9 41.39

] 

The cost and some operation results of the alternative 

CIHLQR controller have been shown in Table II and Figs. 

7 and 8. As can be seen in Table II, the alternative 

CIHLQR controller approximates the behavior of agents 

very well by enforcing a very high cost to itself. As a 

corollary, it could be deduced from the results that 

replacing an N-agents’ controller system with a 

centralized controller to control the system as the same as 

the agents is not rational. However, as mentioned in the 

introduction of this article, this method of controller 

design in large systems, where control of system inputs is 

available to non-cooperative intelligent agents, is a 

necessity. 

Since the LQR controllers have the inherent property of 

being robust to parametric uncertainties in the under 

control linear system, the proposed controller will also 

have this property. The robustness of IHLQR controllers 

in the presence of asymptotic and non-asymptotic 

disturbances has been discussed in detail in the authors’ 

paper [32].  
Table II. The cost of alternate CIHLQR  

Alternate CIHLQR LFNE Cost 

984.9 942.4514 Commissioner 

14.03 13.6643   Company 1 

31.26 26.5171 Company 2 
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Fig. 7. Plotting the control inputs in the LFNE method and the alternate LSE approximated CIHLQR controller for (a) 

Area 1, (b) Area 2. 

 

 
Fig. 8. Deviations of some important states by feedback Nash Strategy and its LQR alternative controller (a) Deviation 

of frequency in area 1, (b) Deviation of frequency in Area 2, (c) Deviation of power in Tie-Line.

 

5. Conclusion 

This paper deals with the design of a two-agent 

decentralized robust control system based on the Nash 

equilibrium point. In this regard, to provide an analytical 

solution, the agent-based controller design problem of the 

game was changed to the problem of designing a 

centralized infinite horizon LQR centralized infinite 

horizon LQR (CIHLQR). For this purpose, the necessary 

and sufficient conditions for the existence of the alternate 

CIHLQR problem were investigated as a theorem. In the 

cases where fully tracking is not possible, the least-

squares error method was used to extract the weighted 

matrices of the alternative centralized problem cost 

functions. The methods presented in this study were used 

in the design of automatic generation control of a two-area 

power system with two non-cooperative power generation 

companies. The results confirm the validity of the 

introduced theories. 
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