تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,855 |
تعداد دریافت فایل اصل مقاله | 15,213,902 |
پیشبینی کوتاهمدت و درازمدت تغییر اقلیم بر آسیبپذیری سفرههای آب زیرزمینی با استفاده از شاخص DRASTIC و نرمافزار TerrSet | ||
هیدروژئولوژی | ||
دوره 7، شماره 2، اسفند 1401، صفحه 109-120 اصل مقاله (1.07 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hydro.2022.48945.1253 | ||
نویسندگان | ||
امیررضا سپهرآرا1؛ سامان جوادی* 2؛ سید عباس حسینی3 | ||
1دانشجوی دکتری، گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. | ||
2دانشیار، گروه مهندسی آب، پردیس ابوریحان، دانشگاه تهران، پاکدشت، ایران. | ||
3استادیار، گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. | ||
چکیده | ||
امروزه اثر تغییرات کاربری اراضی بر میزان آسیبپذیری آبخوان سنجیده شود. از آنجایی که پتانسیل آلودگی نقاط مختلف یک آبخوان از نظر رسیدن آلاینده به آب زیرزمینی متفاوت میباشند، ضروری است با پیشبینی کاربریهای اراضی در آینده، میزان تغییرات آسیبپذیری آبخوانها بررسی شود. اهمیت این تحقیق درنظر گرفتن توأمان آسیبپذیری ذاتی آبخوان به روش DRASTIC و تغییرات کاربری اراضی در آینده میباشد. برای نخستین بار اثر تغییرات کاربری اراضی در آینده بر آسیبپذیری آبخوان هشتگرد برای دورههای 2025، 2035 و 2045 بررسیشده و با وضعیت موجود سال 2018 مقایسه گردیده است. ابتدا با استفاده از روش زنجیره مارکف در نرمافزار TerrSet، تغییرات کاربری اراضی برای سه مقطع زمانی 2025، 2035 و 2045 استخراج شد. نقشه کاربری اراضی با استفاده از تصاویر ماهواره لندست برای سالهای ۱۹۹۸، ۲۰۰۸ و ۲۰۱۸ در نرمافزار 5.3 ENVI انجام شد. نقشههای تولیدشده بهعنوان یک پارامتر به روش آسیبپذیری DRASTIC اضافه شده و در نهایت DRASTIC-Lu برای سه دوره پیشبینی گردید. نتایج نشان میدهد میزان آسیبپذیری در کلاس زیاد و خیلیزیاد در سال 2045، بهترتیب به میزان 34 درصد و 83 درصد افزایش خواهد یافت. همچنین روند افزایشی میزان آسیبپذیری در کلاس خیلیزیاد برای سه دوره افزایشی بوده و از 14 درصد در سال 2025 به 20 و 83 درصد در سالهای 2035 و 2045 خواهد رسید. نتایج این تحقیق نشان میدهد برای سالهای آینده در جهت حفظ منابع آب زیرزمینی لازم است اقدامات پایشی ویژهای در مناطق شمالی و شمال شرقی آبخوان درنظر گرفته شود. | ||
کلیدواژهها | ||
آبخوان هشتگرد؛ آسیبپذیری؛ تغییرات کاربری اراضی؛ نرمافزارTerrSet؛ DRASTIC | ||
مراجع | ||
احمدی، ح.، زهتابیان، غ.، صادقی روشن، م. ح.، 2007. تجزیهوتحلیل حساسیت راهبردهای بهینه بیابانزدایی درچارچوب فرایند تحلیلی سلسله مراتبی (AHP) مطالعه موردی منطقه خضرآبادیزد. جغرافیایی سرزمین، 4(3): 15-30.
ندیری، ع. ا.، صدقی، ز.، 1398. ارزیابی آسیبپذیری آبخوانهای چندگانه با استفاده از روشهای DRASTIC و SINTACS. هیدروژئولوژی، 4(2): 171-186.
سعیدی رضوی, ب.، 1399. بررسی آسیبپذیری آب زیرزمینی دشت گلپایگان با استفاده از بهینهسازی روش دراستیک. هیدروژئولوژی، 5(2): 61-74.
محمدپور، م.، زینالزاده، ک.، رضاوردینژاد، و.، حصاری، ب.، 1399. بررسی نوسانات آب زیرزمینی تحتتاثیر تغییر اقلیم و بهبود روش آبیاری (مطالعه موردی: دشت اهر). هیدروژئولوژی 5(2): 112-99.
Al-Adamat, R. A., Foster, I. D., Baban, S. M., 2003. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Applied Geography, 23(4), 303-324. Aller, L., Lehr, JH., Petty, RJ., Hackett, G., 1987. DRASTIC: A Standardised System For Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. US Environmental Protection Agency Report (EPA/600/2-87/035). Allouche, N., Maanan, M., Gontara, M., Rollo, N., Jmal, I., Bouri, S. 2017. A global risk approach to assessing groundwater vulnerability. Environmental Modelling & Software, 88, 168-182. Almasri, M. N., 2008. Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. Journal of Environmental Management, 88(4): 577-593. Al-Zabet, T., 2002. Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environmental geology, 43(1): 203-208. Asadi, P., Ataie-Ashtiani, B., Beheshti, A., 2017. Vulnerability assessment of urban groundwater resources to nitrate: the case study of Mashhad, Iran. Environmental Earth Sciences, 76(1): 41. Babiker, I. S., Mohamed, M. A., Hiyama, T., Kato, K., 2005. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of the Total Environment, 345(1-3): 127-140. Birhanu, A., Masih, I., van der Zaag, P., Nyssen, J., Cai, X., 2019. Impacts of land use and land cover changes on hydrology of the Gumara catchment, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C, 112, 165-174. Gogu, R. C., Hallet, V., Dassargues, A. 2003. Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environmental Geology, 44(8): 881-892 Hao, J., Zhang, Y., Jia, Y., Wang, H., Niu, C., Gan, Y., Gong, Y., 2017. Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: a case study in Chaoyang District of Beijing City. Arabian Journal of Geosciences, 10(6): 144. Islam, M. T., Huda, N., Abdullah, A. B., Saidur, R., 2018. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies:.Current status and research trends. Renewable and Sustainable Energy Reviews, 91: 987-1018 Javadi, S., Hashemy, S. M., Mohammadi, K., Howard, K. W. F., Neshat, A., 2017. Classification of aquifer vulnerability using K-means cluster analysis. Journal of hydrology, 549: 27-37. Javadi, S., Kavehkar, N., Mohammadi, K., Khodadadi, A., Kahawita, R., 2011. Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability. Water International, 36(6): 719-732. Javadi, S., Kavehkar, N., Mousavizadeh, M. H., Mohammadi, K., 2011. Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. Journal of Agricultural Science and Technology, 13(2): 239-249. Kardan Moghaddam, H., Jafari, F., Javadi, S., 2017. Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrological Sciences Journal, 62(1): 137-146. Kumar, A., Pramod Krishna, A., 2020. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto International, 35(11): 1149-1178. Machiwal, D., Cloutier, V., Güler, C., Kazakis, N., 2018. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environmental Earth Sciences, 77(19): 1-30. Nadiri, A. A., Gharekhani, M., Khatibi, R., Moghaddam, A. A., 2017. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models. Environmental Science and Pollution Research, 24(9): 8562-8577. Nahin, K. T. K., Basak, R., Alam, R., 2020. Groundwater vulnerability assessment with DRASTIC index method in the salinity-affected southwest coastal region of Bangladesh: a case study in Bagerhat Sadar, Fakirhat and Rampal. Earth Systems and Environment, 4(1): 183-195. Neshat, A., Pradhan, B. 2017., Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arabian Journal of Geosciences, 10(22): 501-509. Neshat, A., Pradhan, B., Pirasteh, S., Shafri, H. Z. M., 2014. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environmental earth sciences, 71(7): 3119-3131. Rahmani, B. E., Guefaifia, O., Gouaidia, L., Baali, F., 2021. Sensitivity analysis of groundwater vulnerability maps in the Messaad plateau. South Algerian steppe region. Algerian Journal of Environmental Science and Technology. 9(2): 3093-3100. Ribeiro, L., Serra, E., Paralta, E., Nascimento, J., 2003. Nitrate pollution in hardrock formations: vulnerability and risk evaluation by geomathematical methods in Serpa-Brinches aquifer (South Portugal). In Proc IAH International Conference on Groundwater in Fractured Rocks, Prague, Czech Republic, IHP-VI, Series on Groundwater, 7: 377-378. Saidi, S., Bouri, S., Ben Dhia, H., 2011. Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56(2): 288-304. Secunda, S., Collin, M. L., Melloul, A. J., 1998. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region. Journal of environmental management, 54(1): 39-57. Shrestha, S., Kafle, R., Pandey, V. P., 2017. Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of the Total Environment, 575: 779-790. Stigter, T. Y., Ribeiro, L., Dill, A. C., 2006. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeology Journal, 14(1-2): 79-99. Tarawally, M., Wenbo, X., Weiming, H., Mushore, T. D., Kursah, M. B., 2019. Land use/land cover change evaluation using land change modeller: A comparative analysis between two main cities in Sierra Leone. Remote Sensing Applications: Society and Environment, 16: 100262. Torkashvand, M., Neshat, A., Javadi, S., Yousefi, H., 2021. DRASTIC framework improvement using stepwise weight assessment ratio analysis (SWARA) and combination of genetic algorithm and entropy. Environmental Science and Pollution Research, 28(34): 46704-46724. Vías, J. M., Andreo, B., Perles, M. J., Carrasco, F., Vadillo, I., Jiménez, P., 2006. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeology Journal, 14(6): 912-925. Wang, J., He, J., Chen, H., 2012. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment, 432: 216-226. | ||
آمار تعداد مشاهده مقاله: 428 تعداد دریافت فایل اصل مقاله: 283 |