- [1] Z. Abbas, M. S. Shabbir, and N. Ali, Analysis of rheological properties of Herschel-Bulkley fluid for pulsating flow of blood in ω-shaped stenosed artery, AIP Advances, 7 (2017), 1051123-1-12.
- [2] R. Ahmed, A. Farooki, R. Farooki, N. N. Hamadneh, M. F. Asad, I. Khan, M. Sajid, G. Bary, and M. F. S. Khan, An Analytical Approach to Study the Blood Flow over a Nonlinear Tapering Stenosed Artery in Flow of Carreau Fluid Model, Hindawi Complexity, Article ID 9921642, (2021).
- [3] N. S. Akbar, S. Nadeem, and Kh. S. Mekheimer, Rheological properties of Reiner-Rivlin fluid model for blood flow through tapered artery with stenosis, Journal of the Egyptian Mathematical Society, 24 (2016), 138–142.
- [4] N. S. Akbar and S. Nadeem, Carreau fluid model for blood flow through a tapered artery with a stenosis, Ain Shams Engineering Journal, 5 (2014), 1307–1316.
- [5] S. Akhtar, L. B. Mc Cash, N. Sohail, S. Saleem, and A. Issakhov, Mechanics of non-Newtonian blood flow in an artery having multiple stenosis and electroosmotic effects, Science Progress, 104(3) (2021), 1–15.
- [6] N. Antonova, On Some Mathematical Models in Hemorheology, Biotechnology & Biotechnological Equipment, 26(5) (2012), 3286-3291.
- [7] N. Dash and S. Singh, Analytical Study of Non-Newtonian Reiner–Rivlin Model for Blood flow through Tapered Stenotic Artery, Math. Biol. Bioinf., 15(2) (2020), 295-312.
- [8] Y. Egushi and T. Karino, Measurement of rheologic property of blood by a falling-ball blood viscometer, Ann Biomed Eng., 36(4) (2008), 545-553.
- [9] E. Fatahian, N. Kordani, and H. Fatahian, A review on rheology of non-Newtonian properties of blood, IIUM Engineering Journal, 19(1) (2018), 237-250.
- [10] A. K. Maiti, Casson flow of blood through an arterial tube with overlapping stenosis, IOSR Journal of Mathematics, 11(6) (2015), 26-31.
- [11] M. A. Massoudi, Generalization of Reiner’s mathematical model for wet sand, Mech. Res. Commun., 38 (2011), 378-381.
- [12] Kh. S. Mekheimer and M. A. El Kot, The micropolar fluid model for blood flow through a tapered artery with a stenosis, Acta Mech. Sin., 24 (2008), 637–644.
- [13] M. N. L. Narasimham, On steady laminar flow of certain non-Newtonian liquids through an elastic tube, Proceed- ings of Indian Academy of Sciences, Sec A, 43(2) (1956), 237-246.
- [14] G. Neeraja, P. A. Dinesh, K. Vidya, and C. S. K. Raju, Peripheral layer viscosity on the stenotic blood vessels for Herschel-Bulkley fluid model, Informatics in Medicine Unlocked, 9 (2017), 161–165.
- [15] S. O’Callaghan, M. Walsh, and T. Mc Gloughlin, Numerical modelling of Newtonian and non-Newtonian repre- sentation of blood in a distal end-to-side vascular bypass graft anastomosis, Med. Eng. Phys., 28 (2006), 70-74.
- [16] S. L. Rathna and P. L. Bhatnagar, Weissenberg and Merrington effects in non-Newtonian fluids, Jl. of Indian Institute of Science, 45(2) (1962), 57-82.
- [17] R. Revellin, F. Rousset, D. Baud, and J. Bonjour, Extension of Murray’s law using a non-Newtonian model of blood flow, Theoretical Biology and Medical Modelling, 6(9) (2009), 1-9.
- [18] S. Sapna, Analysis of non-Newtonian fluid flow in a stenosed artery, International Journal of Physical Sciences, 4(11) (2009), 663-671.
- [19] S. Sreenadh, A. R. Pallavi, and B. H. Satyanarayana, Flow of a Casson fluid through an inclined tube of non- uniform cross section with multiple stenoses, Adv Appl Sci Res., 2(5) (2011), 340–349.
- [20] B. Thomas and K. S. Suman, Blood Flow in Human Arterial System-A Review, Procedia Technology, 24 (2016), 339-346.
- [21] G. B. Thurston, Erythrocyte Rigidity as a Factor in Blood Rheology: Viscoelastic Dilatancy, Journal of Rheology, 23(6) (2000), 703.
- [22] G. B. Thurston and N. M. Henderson, Effects of flow geometry on blood viscoelasticity. Biorheology., 43(6) (2006), 729-746.
- [23] J. Venkatesan, D. S. Sankar, K. Hemalatha, and Y. Yatim, Mathematical Analysis of Casson Fluid Model for Blood Rheology in Stenosed Narrow Arteries, Journal of Applied Mathematics., Article ID 583809, (2013).
- [24] V. K. Verma, Study of Non-Newtonian Herschel-Bulkley Model through Stenosed Arteries, International Journal of Mathematics and its Application, 4(1-B) (2016), 105-111.
- [25] D. F. Young, Fluid mechanics of arterial stenosis, J Biomech Eng., 101 (1979), 157–175.
- [26] F. Yilmaz and M. Y. Gundogdu, A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions., Korea-Australia Rheology Journal, 20(4) (2008), 197-211.
|