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Abstract

This paper focuses on existence, uniqueness, and stability analysis of solutions for a new kind of delayed integro-

differential neural networks with Markovian switches in delays and noises. The studied system combines many
types of integro-differential neural network treatises in the literature. After having presented the studied system,

the existence and uniqueness of solutions are shown under Lipschitz condition. By using the Lyapunov-Krasovskii

functional, some stochastic analysis techniques and the M -matrix approach, stochastic stability, and general decay
stability are established. Finally, a numerical example is given to validate the main established theoretical results.
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1. Introduction

After its appearance in the 19th century, the study of dynamical systems has caught the attention of a group of
researchers, due to its application in different fields [6, 13, 22, 25, 30].

Several important subclasses of hybrid dynamical systems have been widely studied, due to their importance in
the real world and their usefulness in the development of several other areas. In addition, the study of the hybrid
dynamical systems is important, because practical experiences show that even if the subsystems are stable, the
switching system can be unstable, which leaves a large group of researchers interested in studying this kind of systems
[1, 20, 23, 24]. There are two categories of hybrid dynamical systems, which are hybrid dynamical systems with
deterministic commutations (the commutations are generally controlled), and the hybrid dynamical systems with
random switching. But the study of a hybrid system with random switching is more representative than the study
of a hybrid system with controlled switching, seeing that almost all the models that exist in reality are subject
to randomness. Therefore, after the emergence of dynamic systems with random commutations, and due to their
application in many fields, a large part of researchers are interested in the study of these kinds of dynamical systems,
such as [11, 17, 18, 21, 29, 41].

Neural networks with random switching are a class of hybrid dynamical systems with random switching which have
recently experienced wide applications in several areas such as distributed networks, digital communications, securing
communication systems, signal processing, population dynamics systems, chemical process control, image processing,
and among others, see [9, 10, 27] for a brief account.

As time-delay assignment in neural networks can cause oscillation and instability behavior, many researchers have
been interested in the study of delayed neural networks systems with Markovian switching, but, in most work, the
delay is considered as a constant, as constants in the case of a multi-delay system, or the functions depend on t
[8, 33, 40]. In this work the delay is taken depends on the Markov process. Moreover, the system in which the delay
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is not only depends on the current state but also depends on the past state, namely neutral-type system, in particular
neutral-type neural networks that model several realistic phenomena such as population ecology, propagation, and
diffusion models, the study of the motion for a particle in a fluid [5, 15, 28]. So, neutral-type neural networks are
taking into account in the study of this paper with the delays obeying a Markov process.

In some areas such as confocal microscopy and image processing, the importance of Lévy noise is based on the
detection of photons. Thus, the addition of Lévy noise is more representative of the model than the addition of a
Gaussian noise [12], and the modeling of the number of phone calls occurring over a certain period time is done
using a model with Lévy noise [31]. Moreover, Gaussian noise and Lévy noise are parameters that can confuse the
stability of the equilibrium point of a hybrid dynamic system. So, both noises are also taken into account in the study
of different types of stability and stabilization of neural networks using different techniques as Lyapunov functional
theory, generalized Itô’s formula, sliding mode control and M-matrix [2–4, 16, 32]. Taking into account both noises in
such systems is more reliable to apply in reality. But, we remark that the most of works that exist in the literature
take these parameters in a classical way, that is, these parameters are permanently fixed to the system, while in some
real systems, noises are not present in the system all the time, such as wind, heavy rain, heavy snow and other natural
phenomena which are considered as noises for some systems. So, can a dynamic system keep stability when it is
randomly impacted by different types of noise? Finally, some interesting results have been obtained on the various
qualitative properties of nonlinear integro-differential equations and a stochastic differential equation of second order
in [26, 34–38]
Considering the following system simulated under Matlab which illustrates well that when the system is affected
randomly once by Gaussian noise and once by Lévy noise, stability is not always guaranteed.

dx(t) = Ax(t)dt+ (2− r(t))Bx(t)dw(t) + (r(t)− 1)

∫ 2

−1

h(x(t), y)N(dt, dy), (1.1)

with (x1(0), x2(0)) = (0.2,−0.1), where A =

(
−0.9 0
1.3 −1.3

)
, B =

(
0.4 0.2
0.1 0.3

)
, h(x(t), y) = x − y, and r(t) is the

random process taking values in {1, 2}.
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Figure 1. Stochastic approxima-
tion solution of System (1.1) with
Gaussian noise.
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Figure 2. Stochastic approxima-
tion solution of System (1.1) with
Lévy noise.

Compared to other related topics on neutral stochastic neural networks, the main contributions in this paper are
highlighted from the following five aspects.

• To make the model more general, neutral-type, Gaussian noise and Lévy noise, Markovian switching and
time delays are taken into account. Furthermore, the homogeneous Markov process is considered in a form
which allows the model to change its nature randomly which has been almost never considered. In fact, it is a
model which takes four states; delayed neutral-type neural networks without noise, delayed neutral-type neural
networks with Gaussian noise, delayed neutral-type neural networks with Lévy noise and delayed neutral-type
neural networks with Gaussian and Lévy noises.

• Time varying delay is considered continuous and supposed to be dependent on the Markovian process and is
not necessarily derivable.

• Existence and uniqueness of solutions for the model are shown.
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Figure 3. Trajectory of jump pro-
cess r(t).
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Figure 4. Stochastic approxima-
tion solution of System (1.1) with
randomly switched Gaussian and
Lévy noises.

• Basing on the Lyapunov-Krasovskii functional, M-matrix technique and some stochastic analysis techniques,
stochastic stability is proved.

• By using M-matrix technique, Stability with a general decay in order µ and in order µ
p are derived.

The remainder of this paper is organized as follows. Some notations and tools which are used in the formulation
of the studied system are presented in the next section. A description of the model and some useful lemmas are too
introduced. In section 3, the main results are presented in three subsections as follows. In subsection 3.1, existence
and uniqueness of solutions are established. Stochastic stability is proved in subsection 3.2. Stability with a general
decay is studied in subsection 3.3. Section 4 provides a numerical example. In section 5, the conclusion is given.

2. Notations and preliminaries

The following notations are used throughout this paper. Rn×m is the set of n×m real matrices and |.| is the norm of
the n-dimensional real Euclidean space Rn. We use a∧ b (a∨ b) to denote the minimum (maximum) for a, b ∈ R. The

trace norm of the matrix A is defined by |A| =
(
Trace(ATA)

) 1
2 , where AT is its transpose, A > 0 (A < 0) means that

A is a symmetric positive defined (negative defined) matrix. By A� 0 we mean that all element of A are positive.
Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions.

Denote by W (t) a m-dimensional Ft-adapted Brownain motion defined on the probability space (Ω,F , {Ft}t≥0, P ),

let N(dt, dz) be a Ft-adapted Poisson random measure on [0,+∞)×R with compensator Ñ which satisfies Ñ(dt, dz) =
N(dt, dz)−π(dz)dt, t ∈ R+, y ∈ R and π(dz)dt = µϕ(dz)dt is a Lévy measure associated to N , where µ is the intensity
of the Poisson process and ϕ is the probability distribution of the random variable z which satisfies

∫
Z
π(dz) < ∞,

where Z ⊂ R. E(.) is the mathematical expectation with respect to the given probability measure P .
We define two irreducible Markov chains on the probability space (Ω,F , {Ft}t≥0, P ), the first one is the right-continuous
Markov process α(t) which takes values in S1 = {1, 2, 3, 4} with generator Θ = (θς`)4×4 defined as

P (α(t+ dt) = `/α(t) = ς) =

{
θς`dt+ o(dt), ς 6= `

1 + θςςdt+ o(dt) otherwise,

where dt > 0 and θς` > 0 is the transition rate from ς to `. If ` = ς, it follows that θςς = −
4∑

`=1,ς 6=`
θς`.

Let ~2(t) = J1(t)J2(t) and ~3(t) = J1(t)J3(t), with J1(t), J2(t) and J3(t) are defined as

J1(t) =
(4− α(t))α(t)−1

(α(t)− 1)3−α(t) + (3− α(t))α(t)−1
,

J2(t) = (α(t)− 1)3−α(t),

J3(t) = (2− α(t))2.



68 C. IMZEGOUAN, A. ZOUINE, H. BOUZAHIR, AND C. TUNÇ

The second one is the right-continuous Markov process r(t) which takes values in a finite state space S2 = {1, 2, ...,S}
with generator Γ = (γιk)S×S as follows:

P (r(t+ dt) = k/r(t) = ι) =

{
γιkdt+ o(dt), ι 6= k

1 + γιιdt+ o(dt) otherwise,

where dt > 0 and γιk > 0 is the transition rate from ι to k. If ι = k, it follows γιι = −
S∑

k=1,k 6=ι
γιk.

C := C([−σ̃, 0];Rn) denotes the family of bounded continuous functions φ defined on [−σ̃, 0] endowed with the norm
|φ|c = sup

−σ̃≤θ≤0
|φ(θ)|. σt,α(t) is the transmission delay that depends on t and α(t) with 0 ≤ σt,α(t) ≤ σ̃ and σ̃ is a

constant.
xt : [−σ̃, 0] −→ Rn; θ 7−→ xt(θ) = x(t + θ);−σ̃ ≤ θ ≤ 0 is regarded as a C-valued stochastic process, where xt(θ) =
(x1
t (θ), x

2
t (θ), ..., x

n
t (θ))T . We define the initial data of the stochastic process as a bounded continuous function by

x0(θ) = ξ(θ) for − σ̃ ≤ θ ≤ 0.
For any R > 0, define the stopping time τRx as follows:

τRx = inf{t ≥ 0 : |x(t)| ≤ R, |ξ|c > R almost surely}.

We consider the following neutral-type Markovian switched neural networks system with random time-varying
delay:

d[x(t)− Ãα(t)x(t− σt,α(t))] =
[
− B̃r(t)x(t) + C̃r(t)f(x(t)) + D̃r(t)f(x(t− σt,α(t)))

+

∫ t

t−σt,α(t)

Ẽr(t)K(t− u)f(x(u))du
]
dt

+ ~2(t)
(
M̃r(t)g(x(t)) + Q̃r(t)g(x(t− σt,α(t)))

)
dW (t)

+ ~3(t)

∫
Z

(
h(x(t), x(t− σt,α(t)), z, r(t))

)
N(dt, dz),

(2.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn is the state vector associated with the neurons, for all i ∈ S2, B̃i =

diag(b̃i1, b̃
i
2, ..., b̃

i
n)� 0 is the firing rate of the neurons, C̃i = (c̃ijk)n×n and M̃i = (m̃i

jk)n×n are the connection weight

matrices, D̃i = (d̃ijk)n×n, Ẽi = (ẽijk)n×n and Q̃i = (q̃ijk)n×n are the delay connection weight matrices, and for all

i ∈ S1 the matrix Ãi = (ãijk)n×n is the neutral-type parameter. f(x(t)) =
(
f1(x1(t)), f2(x2(t)), ..., fn(xn(t))

)T
is the

neuron activation vector function, g : Rn → Rn×m is the continuous noise intensity function satisfying g(0) = 0 and
h : Rn × Rn × Z × S2 → Rn is the Lévy noise intensity function satisfying h(0, 0, z, i) = 0 for all (z, i) ∈ Z × S2.
Kij : [0, σ̃) −→ [0,+∞) (i, j = 1, 2, ..., n) are piecewise continuous functions on [0, σ̃), subject to∫ σt,`

0

Kij(s)ds ≤ 1 for i, j = 1, 2, ..., n and ` ∈ S1, (2.2)

and α(t) is a Markov process taking values in {1, 2, 3, 4}. Then, we have

α(t) = 1⇒


J1(t) = 1

J2(t) = 0

J3(t) = 1

and

{
~2(t) = 0,

~3(t) = 1,

α(t) = 2⇒


J1(t) = 1

J2(t) = 1

J3(t) = 0

and

{
~2(t) = 1,

~3(t) = 0,
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α(t) = 3⇒


J1(t) = 1

J2(t) = 1

J3(t) = 1

and

{
~2(t) = 1,

~3(t) = 1,

and if α(t) = 4, we get J1(t) = 0, so ~2(t) = 0 and ~3(t) = 0. Then, we have the following result.

Remark 2.1. We notice that if α(t) = 1, α(t) = 2, α(t) = 3 or α(t) = 4, then system (2.1) is reduced, respectively, to
a delayed Markovian switched neutral-type neural networks system with Lévy noise, with Gaussian noise, with both
Gaussian and Lévy noises or without any noise.

In this paper, it is assumed that the processes α(t), r(t), W (t) and N(dt, dz) are independent.

Definition 2.2. [7] The trivial solution of system (2.1) with initial data ξ is said to be stochastically stable if for
every real pair ε ∈ (0, 1) and R, there exists a H = H(ε, R) > 0, such that

P
{
|x(t, ξ)| < R, t ≥ 0

}
≥ 1− ε,

where |ξ|c < H.

Now, we display some interesting lemmas which are used to demonstrate the main results.

Lemma 2.3. [39] Let ai ∈ R, s, p ∈ Z with p ≥ 1, then

∣∣ s∑
i=1

ai
∣∣p ≤ sp−1

s∑
i=1

|ai|p.

Lemma 2.4. [39] For any p ≥ 2, q ≥ 1 with p > q we have

|x|p−q|y|q ≤ p− q
p
|x|p +

q

p
|y|p.

For the purpose of stability study, we impose the following assumptions.

Assumption 2.1. For each x, x̄, y, ȳ ∈ Rn, p ≥ 2, j ∈ {1, 2, ..., n}, ` ∈ S1, and k ∈ S2

|fj(xj)− fj(yj)|p ∨ |gj(xj)− gj(yj)|p ≤ L1j |xj − yj |p,

that is,

|f(x)− f(y)|p ∨ |g(x)− g(y)|p ≤ L1|x− y|p, (2.3)

where L1 = max
1≤j≤n

{L1j}.∫
Z

|h(x, y, k)− h(x̄, ȳ, k)|pπ(dz) ≤ L2(|x− x̄|p + |y − ȳ|p). (2.4)

Moreover, for all xt, yt ∈ C

|Ã`xt − Ã`yt|p ≤ L`|xt − yt|pC , (2.5)

with Ã` satisfies ρ(Ã`) ≤ L` < 1, where ρ(Ã`) is the spectral radius of Ã`.

Assumption 2.2. For any ` ∈ S1, there is a λ =
(
λ1, λ1, · · · , λS

)
∈ RS+ such that

∆` = Λ`λ ≥ 0,
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where

Λ` :=− diag
(
χ`1, χ

`
2, · · · , χ`S

)
− ζ`,

χ`k :=− pb̃min(k) + (2p−1 − 1)π(Z) + 2pL2

(
~3(t)

)p
+ n2.2p−1

[
K̄ + K̄L` + 2

∣∣θ``∣∣+

4∑
ς=1

∣∣θ`ς ∣∣Lς]
+ pL1

[
|C̃k|+ |D̃k|+ n2|Ẽk|+

1

4

(
~2(t)

)2(
n(p− 2) + 1

)(∣∣M̃k

∣∣2 +
∣∣Q̃k∣∣2)],

ζ` :=
(
ζ`kι
)
S×S ,

such that ζ`kι := γkι + 2p−1n2
(
1 + L`

)∣∣γkι∣∣ and k ∈ S2.

3. Main results

In this section, we establish existence and uniqueness of solutions for system (2.1), then, we deal with stochastic
stability.

3.1. Existence and uniqueness of solutions.

Theorem 3.1. Assume that Assumption 2.1 holds. Then, system (2.1) has a unique global solution on [−σ̃,+∞)
with initial conditions ξ ∈ C, α(0) = α0 and r(0) = r0.

Proof. α(t) and r(t) are right continuous Markov jumps. Then, there are two sequences {%k}k≥0 and {τk∗}k∗≥0 of
stopping times such that the processes α(t) and r(t) are random constants, respectively, on every interval [%k, %k+1),
and [τk∗ , τk∗+1). So, α(t) = α(%k) on %k ≤ t < %k+1 and r(t) = r(τk∗) on τk∗ ≤ t < τk∗+1 for any k, k∗ ≥ 0.
We consider [a∗0, a

∗
1) = [%0, %1)∩ [τ0, τ1). For the sake of simplicity, we denote α0 = α(%0), r0 = r(τ0), x = x(t) and xt =

x(t− σt,α(t)).
For any t ∈ [a∗0, a

∗
1], we have from (2.1) that

d[x− Ãα0
xt] = F̃ (x, xt, α0, r0)dt+ G̃(x, xt, α0, r0, ~2(t))dW (t) + ~3(t)

∫
Z

h(x, xt, z, r0)N(dt, dz), (3.1)

with initial conditions (ξ, α0, r0) ∈ C × S1 × S2, where

F̃ (x, xt, α0, r0) = −B̃r0x+ C̃r0f(x) + D̃r0f(xt) +

∫ t

t−σα0

Ẽr0K(t− s)f(x(s))ds,

and

G̃(x, xt, α0, r0, ~2(t)) = ~2(t)
(
M̃r0g(x) + Q̃r0g(xt))

)
.

Now, we show the conditions that guarantee existence and uniqueness of solutions for system (3.1) on [a∗0, a
∗
1]. For

any ψ,ϕ ∈ C, using Lemma 2.3 and condition (2.3), we prove that

|F̃ (ψ(0), ψ, α0, r0)− F̃ (ϕ(0), ϕ, α0, r0)|2 ∨ |G̃(ψ(0), ψ, α0, r0)− G̃(ϕ(0), ϕ, α0, r0)|2 ≤ δ̄|ψ − ϕ|2c , (3.2)

where δ̄ = max{δ1, δ2} , with δ1 = 4
(
|B̃r(ι0)|2 + L1(|C̃r(ι0)|2 + |D̃r(ι0)|2 + n4|Ẽr(ι0)|2)

)
and δ2 = 2L1(|M̃r0 |2 + |Q̃r0 |2).

Employing (2.4), we have∫
Z

|h(ψ(0), ψ, z, r0)− h(ϕ(0), ϕ, z, r0)|pπ(dz) ≤ L2|ψ(0)− ϕ(0)|p + L2|ψ − ϕ|pc

≤ 2L2|ψ − ϕ|pc ,
(3.3)

and from (2.5), one has

|Ã`ψ − Ã`ϕ|p ≤ L`|ψ − ϕ|pc . (3.4)

Therefore, it is known that conditions (3.2), (3.3) and (3.4) assure that system (3.1) has a unique solution on [a∗0, a
∗
1].

For more information see [19].
The second step, we take system on [a∗1, a

∗
2] with initial condition xa∗1 and by the same method, we show that it has a
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unique solution on [a∗1, a
∗
2].

Repeating the argument on the intervals [a∗i , a
∗
i+1] with (i ≥ 2), we establish that system (2.1) has a unique solution

on [−σ̃,+∞). �

3.2. Stochastic stability.

Theorem 3.2. Assume that Assumption 2.1 and Assumption 2.2 hold, then system (2.1) is stochastically stable.

Proof. Let

V
(
t, x, α(t), r(t)

)
=
λr(t)

p

∣∣x+ Ãα(t)xt,α(t)

∣∣p +
λr(t)

p

∫ t+σt,α(t)

t

n∑
i=1

n∑
j=1

Kij(s− t)
∣∣xj(s)− n∑

v=1

ãjvxv(2t− s)
∣∣pds,

so

V
(
t, x− Ãα(t)xt, α(t), r(t)

)
=

λr(t)
p

∣∣x∣∣p +
λr(t)
p

∫ t+σt,α(t)

t

n∑
i=1

n∑
j=1

Kij(s− t)
∣∣xj(s)− n∑

v=1

ãjvxv(2t− s)
∣∣pds.

For any ε ∈ (0.1), and R ≥ 0, we take

2p−1n2K̄(1 + L`)|ξ|pc < εRp.

For system (1), the generalized Itô formula of the function V
(
t, x, α(t), r(t)

)
which is an element of C1,2

(
R+ × Rn ×

S1 × S2 : R+
)

is given by:

V
(
t, x− Ãα(t)xt, α(t), r(t)

)
=V
(
0, x(0)− Ãα(0)x(−σα(0)), α(0), r(0)

)
(3.5)

+

∫ t

0

LV
(
s, x(s), x(s− σs,α(s)), α(s), r(s)

)
ds+Gt,

where Gt is defined by

Gt =

∫ t

0

Vx(s, x̃(s), α(s), r(s)).~2(s)
(
M̃r(s)g(x(s)) + Q̃r(s)g(x(s− σs,α(s)))

)
dw(s)

+

∫ t

0

∫
Z

[
V
(
s, x̃(s) + ~3(s)h

(
x(s), x(s− σs,α(s)), z, r(s)

)
, α(s), r(s)

)
− V (s, x̃(s), α(s), r(s))

]
Ñ(ds, dz)

+

∫ t

0

∫
R

[
V
(
s, x̃(s), α(s), r0 + ~1(r(s), u)

)
− V

(
s, x̃(s), α(s), r(t)

)]
µ1(ds, du)

+

∫ t

0

∫
R

[
V
(
s, x̃(s), α0 + ~4(α(s), u), r(s)

)
− V

(
s, x̃(s), α(s), r(t)

)]
µ2(ds, du),

where µ1(ds, du), µ2(ds, du) are two martingale measures, and the details of the functions µ1, µ2, ~1 and ~4 can be
found in [14]. We can easily prove that Gt is a local martingale with G0 = 0, because if a stochastic process is a
martingale, then it is a local martingale.
Let x̃(t) = x(t)− Ãα(t)x(t−σt,α(t)). The infinitesimal operator LV

(
t, x(t), x(t−σt,α(t)), α(t), r(t)

)
is defined for ` ∈ S1
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and k ∈ S2 by

LV (t, x(t), x(t− σt,`), `, k) =Vt(t, x̃(t), `, k) + Vx(t, x̃(t), `, k)
[
− B̃kx(t) + C̃kf

(
x(t)

)
+ D̃kf

(
xt(−σt,`)

)
+

∫ t

t−σt,`
ẼkK(t− s)f

(
x(s)

)
ds
]

+
1

2
trace

[
~2(t)

(
M̃kg(x(t)) + Q̃kg(xt(−σt,`))

)T
Vxx(t, x̃(t), `, k)

~2(t)
(
M̃kg(x(t)) + Q̃kg(xt(−σt,`))

)]
+

∫
Z

[
V
(
t, x̃(t) + ~3(t)h

(
x(t), xt(−σt,`), z, k

)
, `, k

)
− V (t, x̃(t), `, k)

]
π(dz)

+

4∑
ς=1

θ`ςV (t, x̃(t), ς, k) +

S∑
ι=1

γkιV (t, x̃(t), `, ι),

where Vt(t, x, `, k) = ∂V (t,x,`,k)
∂t ,

Vx(t, x, `, k) = col
(
∂V (t,x,`,k)

∂x1
, ∂V (t,x,`,k)

∂x2
, ..., ∂V (t,x,`,k)

∂xn

)
, Vxx(t, x, `, k) =

(
∂2V (t,x,`,k)
∂xi∂xj

)
n×n

.

For the sake of simplicity, consider the notations LV (t, x(t), xt(−σt,`), `, k) = LV , x(t) = x = (x1, x2, · · · , xn) and
xt(−σt,`) = xt,` =

(
x1
t,`, x

2
t,`, · · · , xnt,`). One has that

LV =
λk
p

n∑
i=1

n∑
j=1

Kij(σt,`)
∣∣∣xj(t+ σt,`)−

n∑
v=1

ãjvx
v
t,`

∣∣∣p − λk
p

n∑
i=1

n∑
j=1

Kij(0)
∣∣∣xj − n∑

v=1

ãjvxv

∣∣∣p
+ λk|x|p−2xT

[
− B̃kx+ C̃kf(x) + D̃kf

(
xt,`
)

+

∫ t

t−σt,`
ẼkK(t− s)f

(
x(s)

)
ds
]

+
λk
2
trace

[(
~2(t)

)2(
M̃kg(x) + Q̃kg(xt,`)

)T(
(p− 2)

∣∣x∣∣p−4
x.xT +

∣∣x∣∣p−2
)

(3.6)

×
(
M̃kg(x) + Q̃kg(xt,`)

)]
+
λk
p

∫
Z

[∣∣x+ ~3(t)h
(
x, xt,`, z, k

)∣∣p − |x|p]π(dz)

+
λk
p

4∑
ς=1

θ`ς

∫ t+σt,ς

t

n∑
i=1

n∑
j=1

Kij(s− t)
∣∣∣xj − n∑

v=1

ãjvxv(2t− s)
∣∣∣pds

+

S∑
ι=1

γkι
λι
p

[
|x|p +

∫ t+σt,`

t

n∑
i=1

n∑
j=1

Kij(s− t)
∣∣∣xj − n∑

v=1

ãjvxv(2t− s)
∣∣∣pds]. (3.7)

Using Lemma 2.3 and Assumption 2.1, an upper bound of the first term is

λk
p

n∑
i=1

n∑
j=1

Kij(σt,`)
∣∣∣xj(t+ σt,`)−

n∑
v=1

ãjvx
v
t,`

∣∣∣p−λk
p

n∑
i=1

n∑
j=1

Kij(0)
∣∣∣xj − n∑

v=1

ãjvxv

∣∣∣p
≤ λk

p

n∑
i=1

n∑
j=1

Kij(σt,`)
∣∣∣xj(t+ σt,`)−

n∑
v=1

ãjvx
v
t,`

∣∣∣p
≤ λk

p
2p−1

(
n2K̄|x|p + n2K̄L`|xt,`|p

)
≤ λk

p
2p−1n2K̄

(
1 + L`

)
|xt|pc . (3.8)
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Applying Lemma 2.4 and Assumption 2.1, the second term has an upper bound as follows:

λk|x|p−2xT
[
− B̃kx+ C̃kf(x) + D̃kf

(
xt,`
)

+

∫ t

t−σt,`
ẼkK(t− s)f

(
x(s)

)
ds
]

= λk|x|p−2
[
−

n∑
i=1

b̃i(k)x2
i +

n∑
i=1

n∑
j=1

xic̃ij(k)fj(xj) +

n∑
i=1

n∑
j=1

xid̃ij(k)fj(x
j
t,`)

+

∫ t

t−σt,`

n∑
i=1

n∑
j=1

n∑
v=1

ẽiv(k)Kvj(t− s)xifj(xj(s))ds
]

≤ −λk b̃min(k)|x|p + λkL1|C̃k||x|p + λk
L1

2
|D̃k||x|p + λk

L1

2

(p− 2)

p
|D̃k||x|p

+ λk
L1

p
|D̃k||xt,`|p + λkn

2L1|Ẽk|
(p− 2

p
|x|p +

2

p
|xt,`|p

)
≤ λk

[
− b̃min(k) + L1|C̃k|+ L1|D̃k|+ n2L1|Ẽk|

]
|xt|pc . (3.9)

By Lemma 2.4, Assumption 2.1 and the Cauchy-Schwarz inequality, the third term in (3.6) has the following upper
bound

λk
2
trace

[(
~2(t)

)2(
M̃kg(x) + Q̃kg(xt,`)

)T(
(p− 2)

∣∣x∣∣p−4
x.xT +

∣∣x∣∣p−2
)(
M̃kg(x) + Q̃kg(xt,`)

)]
=
p− 2

2
λk
∣∣x∣∣p−4(~2(t)

)2[ n∑
i=1

n∑
j=1

(
m̃ij(k)gj(xj) + q̃ij(k)gj(x

j
t,`)
)
xi

]2
+
λk
2

∣∣x∣∣p−2(~2(t)
)2 n∑

i=1

[ n∑
j=1

(
m̃ij(k)gj(xj) + q̃ij(k)gj(x

j
t,`)
)]2

≤
(
~2(t)

)2
.
n(p− 2)

4
λk
∣∣x∣∣p−4

[ n∑
i=1

x2
i

( n∑
j=1

m̃ij(k)gj(xj)
)2

+

n∑
i=1

x2
i

( n∑
j=1

q̃ij(k)gj(x
j
t,`)
)2]

+
(
~2(t)

)2
.
λk
4

∣∣x∣∣p−2
[ n∑
i=1

( n∑
j=1

m̃ij(k)gj(xj)
)2

+

n∑
i=1

( n∑
j=1

q̃ij(k)gj(x
j
t,`)
)2]

≤
(
~2(t)

)2
λk

[n(p− 2)

4
L1

∣∣M̃k

∣∣2∣∣x∣∣p +
n(p− 2)2

4p
L1

∣∣Q̃k∣∣2∣∣x∣∣p +
n(p− 2)

2p
L1

∣∣Q̃k∣∣2∣∣xt,`∣∣p
+
L1

4

∣∣M̃k

∣∣2∣∣x∣∣p +
p− 2

4p
L1

∣∣Q̃k∣∣2∣∣x∣∣p +
L1

2p

∣∣Q̃k∣∣2∣∣xt,`∣∣p]
≤
(
~2(t)

)2
.
λk
4
L1

(
n(p− 2) + 1

)(∣∣M̃k

∣∣2 +
∣∣Q̃k∣∣2)∣∣xt∣∣pc . (3.10)

Similarly the fourth term in (3.6) has the following upper bound

λk
p

∫
Z

[∣∣x+ ~3(t)h
(
x, xt,`, z, k

)∣∣p − |x|p]π(dz)

≤ λk
p

[
(2p−1 − 1)π(Z)|x|p + 2p−1

(
~3(t)

)p ∫
Z

∣∣h(x, xt,`, z, k)∣∣pπ(dz)
]

≤ λk
p

[
(2p−1 − 1)π(Z)|x|p + 2p−1L2

(
~3(t)

)p(|x|p + |xt,`|p
)]

≤ λk
p

[
(2p−1 − 1)π(Z) + 2pL2

(
~3(t)

)p]|xt|pc . (3.11)
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For the fifth term, Lemma 2.3 and Assumption 2.1 allows us to write

λk
p

4∑
ς=1

θ`ς

∫ t+σt,ς

t

n∑
i=1

n∑
j=1

Kij(s− t)
∣∣∣xj − n∑

v=1

ãjvxv(2t− s)
∣∣∣pds

+

S∑
ι=1

γkι
λι
p

[
|x|p +

∫ t+σt,`

t

n∑
i=1

n∑
j=1

Kij(s− t)
∣∣∣xj − n∑

v=1

ãjvxv(2t− s)
∣∣∣pds

≤ λk
p

2p−1
(

2n2
∣∣θ``∣∣|x|p + n2

4∑
ς=1

∣∣θ`ς ∣∣Lς |xt|pc)+

S∑
ι=1

γkι
λι
p
|x|p

+

S∑
ι=1

∣∣γkι∣∣λι
p

2p−1
(
n2|x|p + n2L`|xt|pc

)
≤
[λk
p

2p−1n2
(

2
∣∣θ``∣∣+

4∑
ς=1

∣∣θ`ς ∣∣Lς)+

S∑
ι=1

(
γkι + 2p−1n2

(
1 + L`

)∣∣γkι∣∣)λι
p

]
|xt|pc . (3.12)

Substituting (3.8)− (3.12) into (3.6) and from Assumption 2.2, we have

LV ≤1

p

{
λk

(
− pb̃min(k) + (2p−1 − 1)π(Z) + 2pL2

(
~3(t)

)p
+ n2.2p−1

[
K̄ + K̄L` + 2

∣∣θ``∣∣
+

4∑
ς=1

∣∣θ`ς ∣∣Lς]+ pL1

[
|C̃k|+ |D̃k|+ n2|Ẽk|+

1

4

(
~2(t)

)2(
n(p− 2) + 1

)(∣∣M̃k

∣∣2 +
∣∣Q̃k∣∣2)])

+

S∑
ι=1

(
γkι + 2p−1n2

(
1 + L`

)∣∣γkι∣∣)λι}|xt|pc
=

1

p

{
χ`kλk +

S∑
ι=1

ζ`kιλι

}
|xt|pc (3.13)

= −1

p
Λ`k|xt|pc . (3.14)

By Dynkin formula, for any t ≥ 0, it follows that

EV (t ∧ τRx , x̃(t ∧ τRx ), `, k) = EV (0, x̃(0), α(0), r(0)) + E
∫ t∧τRx

0

LV (s, x, xs, α(s), r(s))ds

≤ EV (0, x̃(0), α(0), r(0))

≤ λk
p

2p−1n2K̄(1 + L`)|ξ|pc . (3.15)

From the definition of V (t, x̃(t), α(t), r(t)), we have

V (t ∧ τRx , x̃(t ∧ τRx ), `, k) ≥ λk
p
|x(t ∧ τRx )|p

EV (t ∧ τRx , x̃(t ∧ τRx ), `, k) ≥ λk
p
E
[
1{τRx <t}|x(τRx )|p

]
≥ λk

p
RpP{τRx < t}.
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Consequently,

λkR
p

p
P{τRx < t} ≤ λk

p
2p−1n2K̄(1 + L`)|ξ|pc

⇔ P{τRx < t} ≤ 2p−1n2K̄(1 + L`)|ξ|pc
Rp

< ε.

Letting t −→∞, we get P{τRx <∞} < ε, which is equivalent to

P{|x(t, ξ)| ≤ R, t ≥ 0} ≥ 1− ε. (3.16)

This completes the proof.
�

3.3. Stability with a general decay.

Definition 3.3. The function ψ : R→ (0,∞) is said to be ψ-type function if the function satisfies the following three
conditions

(i) It is continuous and nondecreasing on R and differentiable on R+.

(ii) ψ(0) = 1, ψ(∞) =∞ and β̃ = sup ψ
′
(t)

ψ(t) <∞.

(iii) For any s, t ≥ 0, ψ(t) ≤ ψ(s)ψ(t− s).

Definition 3.4. Let the function ψ ∈ C(R+,R+) be the ψ-type function. Then, for any initial data ϕ, the system is
said to be pth (p ≥ 2) moment stable with a decay ψ(t) of order µ if

lim sup
t→∞

log E|x(t)|p
logψ(t) ≤ −µ.

Moreover, for any initial data ϕ, the system is said to be almost surely stable with decay ψ(t) of order µ
p if

lim sup
t→∞

log |x(t)|
logψ(t) ≤

−µ
p almost surely.

Remark 3.5. If we replace ψ(t) by et or 1 + t, then it leads to the usual exponential stability or polynomial stability,
respectively. Our results will therefore be more general, because we have a large choice for ψ-type functions.

Assumption 3.1. Assume that for any ` ∈ S1, there exists µ > 0 and λ = (λ1, λ2, · · · , λS) ∈ RS+ such that

Λ` = A`λ ≥ 0,

where
A` := −diag

(
Υ`

1,Υ
`
2, · · · ,Υ`

S

)
− ζ` and Υ`

k := χ`k + µβ̃
[
1 + 2p−1n2

(
1 + L`

)]
.

Theorem 3.6. Let Assumption 2.1 and Assumption 3.1 be satisfied. Then for any initial data ξ ∈ C, the solution of
system (2.1) is pth (p ≥ 2) moment stable with the decay ψ(t) of order µ.

Proof. Consider the above Lyapunov function V and set the function

U(t, x(t), α(t), r(t)) = ψµ(t)V (t, x(t), α(t), r(t)). (3.17)
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Therefore, from the definition of the ψ-function and (3.13), we can get for any t ≥ 0 and (`, k) ∈ S1 × S2 that

LU(t, x, xt,`, `, k) =ψµ(t)
(
µ
ψ
′
(t)

ψ(t)
V (t, x̃, `, k) + LV (t, x, xt,`, `, k)

)
≤ ψµ(t)

(
µβ̃V (t, x̃, `, k) +

1

p

{
χ`kλk +

S∑
q=1

ζ`kqλq

}
|xt|pc

)

≤ ψµ(t)
(1

p

{
µβ̃
[
1 + 2p−1n2

(
1 + L`

)]
λk

}
|xt|pc +

1

p

{
χ`kλk +

S∑
q=1

ζ`kqλq

}
|xt|pc

)

=
1

p
ψµ(t)

{(
χ`k + µβ̃

[
1 + 2p−1n2

(
1 + L`

)])
λk +

S∑
q=1

ζ`kqλq

}
|xt|pc

=
−1

p
ψµ(t)Λ`k|xt|pc . (3.18)

Then, by using (3.18), the generalised Itô formula of the function U
(
t, x, α(t), r(t)

)
∈ C1,2

(
R+ × Rn × S1 × S2,R+

)
allows us to write

ψµ(t)
λk
p
E
∣∣x(t)

∣∣p ≤EU(t, x̃(t), `, k)

= EU
(
0, x̃(0), α(0), r(0)

)
+ E

∫ t

0

LU
(
s, x(s), x

(
s− σs,α(s)

)
, α(s), r(s)

)
ds

≤ EV
(
0, x̃(0), α(0), r(0)

)
≤
λr(0)

p

(
1 + 2p−1n2

(
1 + Lα(0)

))
E
∣∣ξ∣∣p

c
,

which gives

E
∣∣x(t)

∣∣p ≤ λr(0)
λmax

(
1 + 2p−1n2

(
1 + Lα(0)

))
E
∣∣ξ∣∣p

c
ψ−µ(t),

which in its turn implies that the global solution is pth-moment stable with a decay ψ(t) of order µ. �

Theorem 3.7. Let Assumption 2.1 and Assumption 3.1 be verified. Then for any initial data ξ ∈ C, the solution of
System (2.1) is almost surely stable with a decay ψ(t) of order µ

p .

Proof. Let us consider the Lyapunov function U used in the proof of Theorem 3.6. By using the Itô formula, we get
from (3.18) that

U(t, x̃(t), α(t), r(t)) = U
(
0, x̃(0), α(0), r(0)

)
+

∫ t

0

LU
(
s, x(s), x

(
s− σs,α(s)

)
, α(s), r(s)

)
ds+M(t)

≤ V
(
0, x̃(0), α(0), r(0)

)
+M(t)

≤
λr(0)

p

(
1 + 2p−1n2

(
1 + Lα(0)

))∣∣ξ∣∣p
c

+M(t), (3.19)

where M(t) :=
∫ t

0
ψµ(s)dGs is a local martingale with M(0) = 0.

Applying the nonnegative semi-martingale convergence theorem [14], it gives from (3.19) that
lim sup
t→∞

U(t, x̃(t), α(t), r(t)) <∞ almost surely.

Therefore, there exists a finite positive random variable } such that for any t ≥ 0

U(t, x̃(t), α(t), r(t)) ≤ } almost surely. (3.20)

We deduce from (3.17) and (3.20) that for any t ≥ 0
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∣∣x(t)
∣∣p ≤ p}

λmax
ψ−µ(t) almost surely,

which implies that

lim sup
t→∞

log |x(t)|
logψ(t) ≤

−µ
p almost surely.

�

4. Numerical simulation

Consider the following system

d[x(t)− Ãα(t)x(t− σt,α(t))] =
[
− B̃r(t)x(t) + C̃r(t)f(x(t)) + D̃r(t)f(x(t− σt,α(t)))

+

∫ t

t−σt,α(t)

Ẽr(t)K(t− u)f(x(u))du
]
dt

+ ~2(t)
(
M̃r(t)g(x(t)) + Q̃r(t)g(x(t− σt,α(t)))

)
dW (t)

+ ~3(t)

∫ 7

−1

(
h(x(t), xt(−σt,α(t)), z, r(t))

)
N(dt, dz),

(4.1)

with α(t) and r(t) take values in S1 = {1, 2, 3, 4} and S2 = {1, 2} respectively. We choose a system in dimension two.
For α(t) ∈ S1, we take

Ã1 =

[
0.2 0
0 0.1

]
, Ã2 =

[
0.2 0
0 0.3

]
, Ã3 =

[
0.3 0
0 0.1

]
, Ã4 =

[
0.3 0
0 0.2

]
,

and σt,α(t) = 3
α(t)+t .

For r(t) ∈ S2, we take the following specifications:

B̃1 =

[
30 0
0 34

]
, C̃1 =

[
0.5 0.6
0.7 0.6

]
, D̃1 =

[
0.3 0.4
0.2 0.5

]
, Ẽ1 =

[
0.4 0.2
0.5 0.3

]
,

M̃1 =

[
0.4 0.2
0.3 0.4

]
, Q̃1 =

[
0.7 0.2
0.5 0.2

]
, h(x, xt, z, 1) = 2x+ xt + z,

B̃2 =

[
28 0
0 39

]
, C̃2 =

[
0.3 0.4
0.5 0.6

]
, D̃2 =

[
0.2 1
0.3 0.2

]
, Ẽ2 =

[
0.2 0.2
0.5 0.5

]
,

M̃2 =

[
0.3 0.2
0 0.2

]
, Q̃2 =

[
0.2 0.6
0.3 0.8

]
, h(x, xt, z, 2) = x+

1

2
xt − z.

The infinitesimal generators Θ = (θς`)4×4 and Γ = (γιk)2×2 of the Markov processes α(t) and r(t), respectively, are
given by:

Θ =


−1 0.2 0.4 0.4
0.5 −1.5 0.5 0.5
0.7 0.5 −2 0.8
0.2 0.3 0.2 −1

 , Γ =

[
−0.7 0.7

1 −1

]
.

To have Assumption 2.1, let f(x) = sin(x), g(x) = x, L1 = L2 = 1. Furthermore, we let λ1 = 0.8, λ2 = 0.1 and
K(t− s) = I2e

s−t for any s ≤ t. Then, for any ` ∈ S1, Λ` are the M -matrices as follows:

Λ1 =

[
36.32 −11.90
−17.00 41.82

]
,Λ2 =

[
15.82 −17.50
−25.00 18.92

]
,Λ3 =

[
03.98 −23.10
−33.00 04.68

]
,Λ4 =

[
15.50 −28.70
−41.00 13.80

]
.

As a result, Theorem 3.2 guarantees that system (4.1) is stochastically stable. A sample of system (4.1) is generated,
and the corresponding data is depicted in Fig. 8. It can be seen that the trajectory tends to zero as long as the time
increases, thus corroborating the result of Theorem 3.2.
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Jump process r(t)

Figure 5. Trajectory of jump pro-
cess r(t) with r(0) = 1.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 t 

 

 

Jump process α(t)

Figure 6. Trajectory of jump pro-
cess α(t) with α(0) = 4.
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Figure 7. Poisson point process
with normally distributed jump
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Figure 8. Stochastic approxi-
mate solution of System (4.1) with
(x1(0), x2(0)) = (0.2,−0.1)

5. Conclusion

In this paper, we have shown the existence and uniqueness of solutions for a system that combines many classes of
delayed neutral-type neural networks in one system in a random manner. The stochastic and general decay stabilities
for the system are studied taking into account a measurable bounded time varying delay function. We have based our
results on the M -matrix theory, a Lyapunov-Krasovskii functional, and some stochastic analysis techniques.
Our model takes four states; delayed neutral-type system without noise, delayed neutral-type system with Gaussian
noise, delayed neutral-type system with Lévy noise, and delayed neutral-type system with the two noises. In addition,
the time varying delay is also supposed to be dependent on the Markovian process. Those considerations represent
the novelty of this paper.
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