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Abstract

This paper deals with a parameter uniform numerical method for singularly perturbed time delayed parabolic
convection-diffusion problems. The method consists of a backward-Euler to discretize in temporal dimension and

exponentially fitted B-spline collocation scheme for the spatial dimension on a uniform mesh. Parameter-uniform

error estimates are obtained, and the method is proved uniformly convergent. The developed scheme is tested on
various problems and observed to support the theoretical results. Finally, the numerical solutions are compared

with the existing literature methods, and the present method is more accurate.
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1. Introduction

Singularly perturbed parabolic differential equations arise in the modeling of phenomena like convective heat trans-
port problems [27], and physiological processes or diseases [17]. There are several approaches exist to deal with
time dependent differential equations in which the highest-order derivative does not multiply by a small parameter
0 < ε � 1 [24]. However, the numerical treatment of singularly perturbed parabolic partial differential equations
with the negative shift started appearing in the late 2008s by Ramesh et al.[25]. Since then studied by Kumar and
Kumar [15], Swaminathan et al. [29], Bansal and Sharma [3], Rao and Chakravarthy [26], and Daba and Duressa [6].
Singularly perturbed time-delayed parabolic partial differential equations exhibit much more complicated dynamics,
as small delays can have large effects. Singularly perturbed time-delayed parabolic partial differential equations model
arises in, for example, chemostat models [34], the respiratory system [31], neural networks [4], and control theory
[11]. Many researchers tried to resolve the steadiness of equilibrium states with varied values of perturbations. An
automatically controlled furnace in the form of a singularly perturbed time-delay parabolic partial differential equation
was studied by Wu in [33]. The author stated that a simplified mathematical description of the overall control system
might be given by:

∂u(x, t)

∂t
= ε

∂2u(x, t)

∂x2
+ v [g (u(x, t− τ))]

(
∂u(x, t)

∂x

)
+ c [f (u(x, t− τ))− u(x, t)] ,

defined on a one dimensional spatial domain 0 < x < 1, where v is the instantaneous material strip velocity depending
on a prescribed spatial average of the time-delayed temperature distribution u(x, t− τ), and f represents a distributed
temperature source function depending on u(x, t − τ). In parabolic partial differential equations, the existence of
singular perturbation and time delay parameters causes uncontrolled oscillations in the calculated solution. Therefore,
usually in thin transition layers, the solution alters rapidly or jumps steeply when away from the layers; solutions
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perform frequently and vary slowly. Since the numerical analysis of such problems presents many difficulties, the
classical numerical methods fail to approximate their solution. A numerical analyst developed two classical approaches
that capture the layers, which are the fitted mesh method [28] or graded meshes [9] and the fitted operator method [18].
In Ansari et al. [1], a singularly perturbed linear parabolic reaction-diffusion problem with time-delay is formulated.
Das and Natesan [7], Gowrisankar and Natesan [12], Das and Natesan [8], Gelu and Duressa [10], Kumar and Kumari
[16], Podila and Kumar [22], Babu and Bansal [2], Negero and Duressa [19–21], and Woldaregay et al. [32] extended
the work to the singularly perturbed time-delayed of parabolic convection-diffusion type. The fact that most authors
limit their research to adaptive grid methods motivates the current authors’ research to solve the problem of singularly
perturbed time-delay parabolic convection-diffusion. This article uses Euler’s implicit finite difference scheme in the
time direction and the B-spline collocation method of the exponential fitted in the space direction to test the robust
numerical solution.

2. Problem Formulation

Let Ωx = (0, 1), D = Ωx × (0, T ], Ω̄x = [0, 1], D̄ = Ω̄x × [0, T ],Γ = Γl ∪ Γb ∪ Γr, where Γl and Γr are the left and
the right side of the rectangular domain D corresponding to x = 0 and x = 1, respectively and Γb = [0, 1] × [−τ, 0].
Consider the following singularly perturbed parabolic convection-diffusion problem with time delay:(

∂

∂t
+ Lε

)
u(x, t) = −c(x, t)u(x, t− τ) + f(x, t), (x, t) ∈ D, (2.1)

with 
u(0, t) = φl(t), Γl = {(0, t) : 0 ≤ t ≤ T},
u(1, t) = φr(t), Γr = {(1, t) : 0 ≤ t ≤ T},
u(x, t) = φb(x, t), (x, t) ∈ Γb,

(2.2)

where the differential operator Lε is given by

Lεu(x, t) = −εuxx(x, t) + a(x)ux(x, t) + b(x, t)u(x, t), (2.3)

0 < ε� 1 is a singular perturbation parameter and τ > 0 represents the delay parameter and the functions a(x), b(x, t), f(x, t)
on D̄ and φb(x, t), φl(t), φr(t) on Γ are sufficiently smooth, bounded functions that satisfy

a(x) ≥ α > 0, b(x, t) ≥ β > 0, (x, t) ∈ D̄.
The solution of the model problems (2.1) and (2.2) posses boundary layer of width O (ε) along x = 1. The existence
and uniqueness of the solution for the model problems (2.1) and (2.2) can be guaranteed by the sufficient smoothness
of φl(t), φb(x, t) and φr(t) along with appropriate compatibility conditions at the corner points (0, 0), (1, 0), (0,−τ)
and (1,−τ), and delay terms as stated below:{

φb(0, 0) = φl(0),

φb(1, 0) = φr(0),
(2.4)

and 
∂φl(0)

∂t
− ε∂

2φb(0, 0)

∂x2
+ a(0)

∂φb(0, 0)

∂x
+ b(0, 0)φb(0, 0) = −c(0, 0)φb(0,−τ) + f(0, 0),

∂φr(0)

∂t
− ε∂

2φb(1, 0)

∂x2
+ a(1)

∂φb(1, 0)

∂x
+ b(1, 0)φb(1, 0) = −c(1, 0)φb(0,−τ) + f(1, 0).

(2.5)

The compatibility conditions (2.4) and (2.5) are guarantee for the existence of a constant C independent of ε for all
(x, t) ∈ Ω̄,

|u (x, t)− u (x, 0) | = |u (x, t)− u0 (x) | ≤ Ct
and

|u (x, t)− u (0, t) | = |u (x, t)− φl (0, t) (x) | ≤ C (1− x) .
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By setting ε = 0, the reduced problem corresponding to Eqs. (2.1) and (2.2) is
∂u0

∂t
+ a(x)u0(x, t) = −b(x, t)u0(x, t− τ) + f(x, t), (x, t) ∈ D,

u0(x, t) = φb(x, t), (x, t) ∈ Γb.
(2.6)

2.1. Properties of continuous solution.

Lemma 2.1. (Continuous maximum principle) Assume that the function η(x, t) ∈ C2 (D) ∩ C0
(
D̄
)
. Suppose

that
(
∂
∂t + Lε

)
η (x, t) ≥ 0, ∀(x, t) ∈ D and η(x, t) ≥ 0, ∀(x, t) ∈ Γ. Then η(x, t) ≥ 0, ∀(x, t) ∈ D̄.

Proof. Let (x∗, t∗) be such that η (x∗, t∗) = min(x,t)∈D̄ η (x, t) and suppose η (x, t) < 0. It is clear that (x∗, t∗) /∈ Γ as

η(x, t) ≥ 0 on Γ. Then, we have ηx (x∗, t∗) = ηt (x∗, t∗) = 0 and ηxx (x∗, t∗) ≥ 0 and thus
(
∂
∂t + Lε

)
ηt (x∗, t∗) < 0

which contradicts the given hypothesis and hence η(x, t) ≥ 0, ∀(x, t) ∈ D̄. �

Lemma 2.2. Assume that u(x, t) is the solution of the continuous problems (2.1) and (2.2). Then we have the bound

|u(x, t)| ≤ C, (x, t) ∈ D̄.

Proof. The result follows from Lemma 2.1 and compatibility conditions. See the detailed proof in Das and Natesan
[7]. �

Lemma 2.3. [5] Under the assumption of Lemma 2.1 and Lemma 2.2, the bound on the derivative of u with respect
to t is given by

|ut(x, t)| ≤ C, (x, t) ∈ D̄.

In order to study the convergence at the spatial discretization stage, we need to know the asymptotic behavior of
the solution and its spatial derivatives.

Lemma 2.4. The bounds on the derivatives of the solution u(x, t) satisfies∣∣∣∣ ∂i+ju∂xi∂tj

∣∣∣∣ ≤ C (1 + ε−iexp (−α (1− x) /ε)
)
,∀(x, t) ∈ D̄,

where i and j are non-negative integers such that, 0 ≤ i+ j ≤ 4.

Proof. The required bound can be obtained by using the argument as given in [14] and bounds given in Lemmas 2.2
and 2.3. For detail proof see Kumar and Kumari [16]. �

3. Formulation of the numerical scheme

3.1. The temporal semidiscretization. The time interval [0, T ] is discretized using a uniform mesh with time step
∆t as

Ω̄Mt = {tn = n∆t, n = 0, 1, ..., T/∆t} ,
and the interval [−τ, 0] is divided into s equal parts as

Ω̄sΓ = {tn = n∆t, n = 0, 1, ..., s, ts = τ,∆t = τ/s} ,
where M is the number of mesh points in time direction in [0, T ] such that M = T/∆t. Now, u(x, t − τ) is a known
function on [0, 1]× [0, τ ] and Eqs. (2.1)-(2.2) becomes a classical singularly perturbed partial differential equations, and
can be treated using the known existing method. Applying implicit Euler method in the time variable discretization
on Ω× Ω̄M produces the following semi-discretize problem,

LεU
n(x) ≡ −ε (Uxx)

n
(x) + a (x) (Ux)

n
(x) + νn (x)Un (x) = Fn (x) ,

Un (0) = φl (tn) , Un (1) = φr (tn) ,

Un (x) = φb (x, tn) , x ∈ Ωx,−(s+ 1) ≤ n ≤ −1,

(3.1)
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where νn (x) = bn (x) +
1

∆t
and Fn(x) = −cn(x)Un−s(x) + fn(x) +

1

∆t
Un−1 (x).

Fn (x) can be defined with delayed term Un−s(x) which is evaluated as

Fn (x) =


− cn(x)φb(x, tn) + fn(x) +

1

∆t
Un−1 (x), if tn < s,

− cn(x)Un−s (x) + fn(x) +
1

∆t
Un−1 (x) , if tn ≥ s.

Lemma 3.1. (Semi-discrete maximum principle) Assume that ηn+1 (x) be a sufficiently smooth function on the
domain

(
D̄
)

such that ηn+1 (0) ≥ 0 and ηn+1 (1) ≥ 0. Then
(
δ−t + LMε

)
ηn+1 (x) ≥ 0 ∀x ∈ D, implies that ηn+1(x) ≥ 0

∀x ∈ D̄, where δ−t = un+1−un

∆t .

Proof. Assume (z∗) ∈ D such that ηn+1 (z∗) = min(x)∈D η
n+1 (x) and suppose ηn+1 (x) < 0. Now, it is clear that

(z∗, tn+1) /∈ {(0, tn+1) , (1, tn+1)} as ηn+1(x) ≥ 0. Therefore, we have d
dx

(
ηn+1 (z∗)

)
= 0 and d2

dx2 (η (z∗)) ≥ 0 and thus(
δ−t + LMε

)
ηn+1 (z∗) = −ε d

2

dx2

(
ηn+1 (z∗)

)
+ a (z∗)

d

dx
ηn+1 (z∗)

+ bn+1 (z∗)ηn+1 (z∗) ≤ bn+1 (z∗)ηn+1 (z∗) < 0,

this contradicts assumption and ηn+1(z∗) ≥ 0, which implies that ηn+1(x) ≥ 0 ∀(x) ∈ D̄. �

Let Un(x) is the semi-discrete approximation to the exact solution u(x, tn) of the problem in Eqs. (2.1)-(2.2) at
tn = n∆t. The error estimates for the temporal semi-discretization (3.1) en+1 = Un(x)−u (x, tn) satisfy the following
Lemma.

Lemma 3.2. (Local error estimate) Assume that
∂ku (x, t)

∂t
≤ C, (x, t) ∈ D̄ × (0, T ], 0 ≤ k ≤ 2. Then the local

error estimate associated to the semi-discretized problem (3.1) is given by

‖en+1‖∞ ≤ C (∆t)
2
.

Proof. Applying Taylor’s series expansion to u (x, tn) and substituting the result into the continuous problems (2.1)
and (2.2) gives

ut (x, tn) +O
(

(∆t)
2
)

=
u(x, tn+1)− u(x, tn)

∆t
= εuxx (x, tn+1) + a(x)ux(x, tn+1)− b(x, tn+1)u (x, tn+1)

− c(x, tn+1)u (x, t−s+n) + f(x, tn+1) +O
(

(∆t)
2
)
.

Clearly en+1(x) satisfies the semi-discrete operator(
δ−t + LMε

)
en+1(x) = O

(
(∆t)

2
)
.

Thus using maximum principle given at Lemma 3.1 we have,

‖en+1‖∞ ≤ C (∆t)
2
.

�

Lemma 3.3. (Global error estimate) The global error estimate En in the temporal direction is given by

‖En‖∞ ≤ C (∆t) .

Proof. The global error estimate is given by

‖En‖∞ =

∥∥∥∥∥
n∑
k=1

ek

∥∥∥∥∥
∞

, n ≤ T

∆t

≤ ‖e1‖∞ + ‖e2‖∞ + ...+ ‖en‖∞ .
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Using local error estimates given in Lemma (3.2),

≤ C1 ((n)∆t) (∆t)

≤ C1T (∆t) , since n (∆t) ≤ T
≤ C (∆t) , C = C1T,

where C is constant independent of ε and ∆t. �

Lemma 3.4. The solution Un(x) of semi-discretized scheme (3.1) and its derivatives satisfies∣∣∣∣diUn(x)

dxi

∣∣∣∣ ≤ C (1 + ε−ie−α(1−x)/ε
)
, for 0 ≤ i ≤ 4.

Proof. For the detail proof see Podila and Kumar [22]. �

3.2. The spatial discretization. Here we use cubic B-splines collocation and introduce the fitting factor for singu-
larly perturbed parabolic convection-diffusion problems (2.1)-(2.2). Equation (3.1) can now be given as

L̂ε,xÛ(x) ≡ −σ (x, ε) Ûxx (x) + a (x) Ûx (x) + νn (x) Û (x) = F̂ (x) ,

Û (0) = φl (tn) , Û (1) = φr (tn) ,

Û (x) = φb (x, tn) , x ∈ Ωx,−(s+ 1) ≤ n ≤ −1,

(3.2)

where Û(x) ≈ Un (x) ≈ U (x, tn) , F̂ (x) ≈ Fn (x) ≈ F (x, tn).
Now, we consider the cubic B-splines at the equally spaced nodes xm and h = xm − xm−1 = 1/N where h is the

piecewise uniform spacing are defined to form a basis over the spatial domain [0, 1], such that: x−2 < x−1 < 0 =
x0 < x1 <, ..., < xN = 1 < xN+1 < xN+2. Let B3

(
Ω̄x
)

be the set of all cubic spline functions over the partition Ω̄x
and ΛN

(
Ω̄x
)

is (N + 3) dimensional subspace of B3

(
Ω̄x
)
. Approximating Φ(x) to the exact solution Û(x) in terms

of B-splines can be expressed as

Φ(x) =

N+1∑
m=−1

λmBm (x) , (3.3)

where λm’s are unknown real coefficients, referred to as degrees of freedom, to be determined by requiring that U(x)
satisfies Eq. (3.2) at N+1 collocation points and boundary conditions. The cubic B-splines are defined by the following
relation [23]:

Bm (x) =
1

h3



(xm+2 − x)
3
, x ∈ [xm+1, xm+2] ,

(xm+2 − x)
3 − 4 (xm+1 − x)

3
, x ∈ [xm, xm+1] ,

(xm+2 − x)
3 − 4 (xm+1 − x)

3
+ 6 (xm − x)

3
, x ∈ [xm−1, xm] ,

(xm+2 − x)
3 − 4 (xm+1 − x)

3
+ 6 (xm − x)

3

− 4 (xm−1 − x)
3
, x ∈ [xm−2, xm−1] ,

0, otherwise.

(3.4)

It is required that Eq. (3.3) satisfies the Eq. (3.2) at x = xm, where xm is an interior point. That is
L̂ε,xm

Φ(xm) ≡ −σ (xm, ε) Φxx (xm) + a (xm) Φx (xm) + νn (xm) Φ (xm) = F̂ (xm) ,

Φ (0) = φl (tn) ,Φ (1) = φr (tn) ,

Φ (xm) = φb (xm, tn) , xm ∈ Ωxm ,−(s+ 1) ≤ n ≤ −1.

(3.5)

Putting the approximation (3.3) into collocation (3.5) at the mesh points Ω̄N with some manipulation yields

r−mλm−1 + rcmλm + r+
mλm+1 = h2F̂m (3.6)
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where 

r−m = −6σm − 3ham + h2

(
1

∆t
+ bnm

)
,

rcm = 12σm + 4h2

(
1

∆t
+ bnm

)
,

r+
m = −6σm + 3ham + h2

(
1

∆t
+ bnm

)
,

with σ (xm, ε) = σm = ερam
2 coth (ρam2 ), a (xm) = am, b (xm)

n
= bnm and F̂ (xm) = F̂m.

The given boundary conditions become{
λ−1 + 4λ1 + λ2 = φl (tn) ,

λN−1 + 4λN + λN+1 = φr (tn) .
(3.7)

Now, Eqs. (3.6) and (3.7) lead to an (N + 3)×(N + 3) system with (N + 3) unknowns {λ−1, λ0, ..., λN+1}. Eliminating
λ−1 from first equation of (3.7) and λN+1 from last equation of (3.7), we get{

(36ε+ 12ha0)λ0 + 6ha0λ1 = h2F̂0

− 6haNλN−1 + (36ε− 12haN )λN = h2F̂N .
(3.8)

The elimination of λ−1 and λN+1 lead to a system of (N + 1) linear equations in (N + 1) unknowns λ0, λ1, ..., λN
which can be given as a linear system of the form

RX = Q, (3.9)

where

R =



36ε+ 12ha0 6ha0 0 0 . . . 0
r−1 rc1 r+

1 0 . . . 0
...

...
...

... . . .
...

0 0 r−m rcm r+
m 0

...
...

...
...

...
...

...
...

...
...

...
...

0 . . . 0 r−N−1 rcN−1 r+
N−1

0 . . . 0 0 −6haN 36ε− 12haN


.

The column vectors X and Q are given as X = [λ0, λ1, λN ]T , Q = [h2F̂0, h
2F̂1, h

2F̂N ]T . The matrix R in Eq. (3.9) is
diagonally dominant and hence it is invertible giving rise to a unique approximate solution U(x).

4. Stability and convergence analysis

This section provides stability and uniform convergence estimate in the maximum norm. Assume that a small error
δR, δQ, has been made in the calculation of R,Q respectively. Let X̂ be the solution of the perturbed system

(R+ δR) X̂ = Q+ δQ.

The collocation method for solving (3.9) is said to be stable, if the perturbed system has a unique solution for
‖δR‖ ≤ C3 and

‖X − X̂‖ ≤ (C1‖δR‖‖X‖+ C2‖δQ‖) . (4.1)

where C1, C2, and C3 positive constants. In Eq. 3.9, we see that R is strictly diagonally dominant. Therefore, by a
result in [30], for a sufficiently small value of h, we have

‖δR−1‖ ≤ C

h2
= ω1.
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Since ‖R−1δR‖ ≤ ‖R−1‖‖δR‖ < 1

2
. Choose a positive constant ω2 <

1

2ω1
. Then whenever ‖δR‖ ≤ ω2, Eq. (4.1) has

a unique solution, for

‖ (R+ δR)
−1 ‖ = ‖

(
I +R−1δR

)−1
R−1‖ ≤ 2ω1.

As (R+ δR)
(
X − X̂

)
= δRX − δQ, it follows that

‖X − X̂‖ ≤ 2ω1 (‖δR‖‖X‖+ ‖δQ‖) .
which ensures the stability of the collocation system (3.9). The following lemma gives the properties of the B-splines
which provides the ε-uniform convergence.

Lemma 4.1. The B-splines set Ω̂ = {B−1, B0, ..., BN+1} defined in Eq. (3.4), satisfy the inequality

N+1∑
m=−1

|Bm (x)| ≤ 10, 0 ≤ x ≤ 1. (4.2)

Proof. Note that∣∣∣∣∣
N+1∑
m=−1

Bm (x)

∣∣∣∣∣ ≤
N+1∑
m=−1

|Bm (x)| .

Now, we have

N+1∑
m=−1

|Bm (x)| = |Bm−1 (x)|+ |Bm (x)|+ |Bm+1 (x)| = 6 < 10.

This is for any nodal value xm. Also, we have |Bm (x)| ≤ 4 and |Bm−1 (x)| ≤ 4, for x ∈ [xm, xm+1]. Similarly,
|Bm−1 (x)| ≤ 1 and |Bm+2 (x)| ≤ 1, for x ∈ [xm, xm+1] . Thus for any point xm ≤ xm+1, we have

N+1∑
m=−1

|Bm (x)| = |Bm−1 (x)|+ |Bm (x)|+ |Bm+1 (x)|+ |Bm+2 (x)| ≤ 10.

�

Lemma 4.2. (Error in the spatial direction) Let Φ(x) be the collocation approximation from the space of cubic

splines to the solution Û(x) ≈ Un(x) of Eq. (3.1) after temporal discretization. If F̂ (x) ∈ C2 [0, 1], then the parameter-
uniform error estimate is given by

‖Û(xm)− Φ(xm)‖∞ ≤ Ch2,

where C is a positive constant independent of h and ε.

Proof. Assume that YN (x) is the unique spline interpolate from Û(x) to the solution of our semi-discrete problem
(3.1) is given by

YN (x) =

N+1∑
m=−1

λ̂mBm (x) . (4.3)

If F̂ (x) ∈ C2 [0, 1], then Û(x) ∈ C4 [0, 1], and following the approach given as in Hall [13], the error estimates yields

‖Dj
(
Û(x)− YN

)
‖ ≤ χmh4−j , j = 0, 1, 2, (4.4)

where χm are the constants. It follows immediately from the estimates (4.4) that

‖LΦ(xm)− LYN (x) ‖ ≤ ωh2, j = 0, 1, 2, (4.5)

where ω = εχ2 + hχ1‖a(x)‖+ hχ0‖ν(x)‖. �
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Assume that LYN (x) = F̂N (xm) and F̂N = [F̂0, F̂1, F̂N ]T . Now, combining Eqs. (3.9) and (4.4) satisfies the
inequality

‖R (X − yN ) ‖ ≤ ωh4,

where yN = [χ0, χ1, χN ]T , RyN = h2F̂N (xm) ,∀m = 0, 1, 2, ..., N. The matrix R in Eq. (3.9) is strictly diagonally
dominant. Hence it is nonsingular. Also by Varah [30], we have

‖R−1‖∞ ≤
C

h2
.

Again, using Eq. (3.9), it follows, the mth component of R (X − yN ) can be written as
π0 = rc0β0 + r+

1 β1,

πm =
(
−6σm − 3ham + h2νm

)
βm−1 +

(
12σm + 4h2νm

)
βm +

(
−6σm + 3ham + h2νm

)
βm+1,

πN = r−N−1βN−1 + rcNβN ,

(4.6)

where πm = h2
[
F (xm)− F̂ (xm)

]
, 0 ≤ m ≤ N , rc0 = 36ε+ 12ha0, r

+
1 = 6ha0, r

−
N−1 = −6haN , r

c
N = 36ε− 12haN , and

βm = λm − λ̂m,−1 ≤ m ≤ N + 1.
It is evident from inequality (4.5) that ‖βm‖ ≤ h2‖F (xm)− F̂ (xm)‖ ≤ ωh4. Let π = max1≤m≤N−1 |πm| and consider

β = [β−1, β0, β1, βN , βN+1]T . Defining Pm = |πm| and P̂ = max1≤m≤N−1 |Pm|. From Eq. (4.6), we have(
12σm + 4h2νm

)
βm =(

6σm − h2νm
)

(βm−1 + βm+1) + (3ham) (βm−1 − βm+1) + πm, 1 ≤ m ≤ N − 1.
(4.7)

Now, it is easy to see from Eq. (4.7),

P̂ ≤ ωh3

2hν̃ − 6ã
, P0 ≤

2ωh5ν̃

(36 |σm|+ 12hã) (2hν̃ − 6ã)
, PN ≤

2ωh5ν̃

(36 |σm| − 12hã) (2hν̃ − 6ã)
.

Also, from the boundary conditions we have

P−1 ≤
ωh3ω1

2hν̃ − 6ã
, PN+1 ≤

ωh3ω2

2hν̃ − 6ã
,

where ω1 = 9σ0+3hã+2h2ν̃
9σ0+3hã and ω2 = 9σ0−3hã+2h2ν̃

9σ0−3hã .

Thus, using the value ω = εχ2 + hχ1‖a(x)‖+ hχ0‖ν(x)‖ one can easily show that

P = max
−1≤m≤N+1

{Pm} ≤ Θh2, (4.8)

where Θ is independent of h and ε. Subtracting Eq. (4.3) from Eq. (3.3), we get

Φ(x)− YN (x) =
N+1∑
m=−1

(
λm − λ̂m

)
Bm (x) .

This implies

‖Φ(x)− YN (x)‖∞ ≤ max
−1≤m≤N+1

∣∣∣λm − λ̂m∣∣∣ N+1∑
m=−1

|Bm (x)| . (4.9)

Now, combining Eqs. (4.2), (4.8), and (4.9) yields,

‖YN (x)− Φ(x)‖∞ ≤ 10Θh2,

with

‖Û(x)− YN (x)‖∞ ≤ χ0h
4.

Using triangle inequality

‖Û(x)− Φ(x)‖ ≤ ‖Û(x)− YN (x)‖+ ‖YN (x)− Φ(x)‖, (4.10)
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the above equation is combined to give

‖Û(x)− Φ(x)‖∞ ≤ Ch2, (4.11)

where C = 10Θ + χ0h
2.

Lemma 4.3. (Error in the fully discrete scheme) Let u(x, t) be the solution of singularly perturbed time delay
parabolic convection-diffusion problems (2.1) and (2.2) and U(xm, tn) be the approximation to the solution u(xm, tn)
of the fully discretized scheme obtained after the temporal discretization. Then, the uniform error estimate for the
fully discrete scheme is given by

‖U(xm, tn)− u(xm, tn)‖∞ ≤ C
(
∆t+ h2

)
, 0 ≤ m ≤ N.

Proof. The proof easily follows the estimates given in Lemma (3.2) and Lemma (4.2). �

5. Numerical results

The maximum pointwise error EN,∆tε and the corresponding convergence order pN,∆tε are defined by

EN,∆tε = max
1≤m,n≤N−1,M−1

∣∣∣(Unm)
N,∆t − (Unm)

2N,∆t
2

∣∣∣ , pN,∆tε =
log
(
EN,∆tε /E

2N,∆t
2

ε

)
log2

,

and from these values we obtain the ε-uniform error EN,∆t and the corresponding ε-uniform order of convergence
pN,∆t by

EN,∆t = max
ε
EN,∆tε and pN,∆t =

log
(
EN,∆t/E2N,∆t

2

)
log2

.

An analytical solution is unknown for these problems, therefore the maximum point wise errors and the corresponding
numerical orders of convergence are calculated by using the double mesh principle [18].

Example 5.1. Consider the problem
∂u

∂t
− ε∂

2u

∂x2
+ (2− x2)

∂u

∂x
+ xu(x, t) = −u(x, t− τ) + 10t2exp(−t)x(1− x) ∈ (0, 1)× (0, 2],

u(x, t) = 0, (x, t) ∈ [0, 1]× [−1, 0] ,

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 2] .

Example 5.2. Consider problem given in
∂u

∂t
− ε∂

2u

∂x2
+

(5− x2)

3

∂u

∂x
+ tu(x, t) = −u(x, t− τ) + t3x (1− x) sin (πx) , (x, t) ∈ (0, 1)× (0, 2],

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 2] ,

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0] .

The computed maximum point wise errors EN,∆tε and the corresponding numerical rates of convergence pN,∆tε for
Examples 5.1 and 5.2 calculated by scheme (3.6) tabulated in Tables 1 and 3 respectively. The two Tables 1 and 3
clearly indicates that for several values of ε, M and N , the proposed numerical method is parameter-uniform error
as well as parameter-uniform rate of convergence. In Tables, 2 and 4, we are comparing maximum point wise error
(EN,∆tε ) corresponding to two numerical results. It can also be noted that to solve the system of equations numerically,
we have used the matrix inverse method. It can be observed from Tables 2 and 4 that maximum point-wise error of
scheme in (3.6) is more accurate results than results in [2, 16]. In Tables 1 and 3, it is shown that the convergence
order of the proposed numerical scheme is 1. Clearly, these results are in good agreement with our theoretical findings
(see Lemma 4.3). To visualize the appearance of the boundary layers in the solutions of Examples 5.1 and 5.2, we
have plotted the surface plots for N = M = 64 in Figures 1 and 2 for ε = 1 and ε = 2−16. As observed from the two
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Table 1. EN,∆tε and the corresponding pN,∆tε for Example 5.1.

ε Number of intervals N/time step size ∆t
↓ 16/ 1

10 32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160

2−0 5.1006e− 04 2.3974e− 04 1.2585e− 04 6.4539e− 05 3.2675e− 05
1.0892 0.92977 0.96346 0.98198 −

2−4 4.7329e− 03 1.6262e− 03 8.9236e− 04 4.6710e− 04 2.3903e− 04
1.5412 0.86581 0.93389 0.9665 −

2−8 8.8017e− 03 5.1912e− 03 2.5903e− 03 1.0822e− 03 3.5995e− 04
0.76171 1.0029 1.2592 1.5881 −

2−12 8.8017e− 03 5.2758e− 03 3.1195e− 03 1.6970e− 03 8.8451e− 04
0.73839 0.75808 0.87833 0.9400 −

2−16 8.8017e− 03 5.2758e− 03 3.1195e− 03 1.6970e− 03 8.8451e− 04
0.73839 0.75808 0.87833 0.9400 −

2−20 8.8017e− 03 5.2758e− 03 3.1195e− 03 1.6970e− 03 8.8451e− 04
0.73839 0.75808 0.87833 0.9400 −

2−24 8.8017e− 03 5.2758e− 03 3.1195e− 03 1.6970e− 03 8.8451e− 04
0.73839 0.75808 0.87833 0.9400 −

2−28 8.8017e− 03 5.2758e− 03 3.1195e− 03 1.6970e− 03 8.8451e− 04
0.73839 0.75808 0.87833 0.9400 −

EN,∆t 8.8017e-03 5.2758e-03 3.1195e-03 1.6970e-03 8.8451e-04
pN,∆t 0.73839 0.75808 0.87833 0.9400 -

Table 2. Comparison EN,∆tε for Example 5.1.

ε ↓ N = M = 16 N = 32 N = 64 N = 128 N = 256
Present method
2−0 5.4727e− 04 2.9416e− 04 1.5573e− 04 8.0256e− 05 4.0737e− 05
2−4 4.8357e− 03 2.0024e− 03 1.1050e− 03 5.8057e− 04 2.9796e− 04
2−8 8.5779e− 03 5.3292e− 03 2.6204e− 03 1.1346e− 03 4.2387e− 04
2−12 8.5779e− 03 5.4144e− 03 3.2062e− 03 1.7466e− 03 9.1109e− 04
2−16 8.5779e− 03 5.4144e− 03 3.2062e− 03 1.7466e− 03 9.1129e− 04
2−20 8.5779e− 03 5.4144e− 03 3.2062e− 03 1.7466e− 03 9.1129e− 04
Result in [16]
2−0 2.29e− 03 1.31e− 03 6.99e− 04 3.61e− 04 1.83e− 04
2−4 1.18e− 02 9.18e− 03 6.04e− 03 3.61e− 03 2.05e− 03
2−8 2.78e− 02 1.39e− 02 6.30e− 03 2.68e− 03 1.35e− 03
2−12 3.36e− 02 1.81e− 02 9.13e− 03 4.49e− 03 2.17e− 03
2−16 3.40e− 02 1.84e− 02 9.36e− 03 4.66e− 03 2.30e− 03
2−20 3.41e− 02 1.84e− 02 9.38e− 03 4.67e− 03 2.31e− 03

Figures 1 and 2, the solution of the two Examples 5.1 and 5.2 has layers at the right side of the rectangular domain.
It is shown that the effect of perturbation parameter ε and delay parameter τ on the boundary layer of the solution
for Examples 5.1 and 5.2 are illustrated in Figures 3A and 3B. It is observed that as the perturbation parameter ε
goes to zero strong boundary layer is formed on the right side of the x-domain. The maximum pointwise errors are
plotted in log-log scale in Figures 4A and 4B for the two Examples 5.1 and 5.2 respectively. It is shown that Figure
4 reveal the numerical order of convergence. The results in tables and figures obtained from the given two examples
confirm the proposed numerical method is more efficient. Note that the current paper computations related to the
given examples were performed using the MATLAB 2013A software package.
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Table 3. EN,∆tε and the corresponding pN,∆tε for Example 5.2.

ε Number of intervals N/time step size ∆t
↓ 16/ 1

10 32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160

2−0 1.7528e-04 1.2993e-04 8.3665e-05 4.6776e-05 2.4655e-05
0.43193 0.63504 0.83886 0.92389

2−4 2.6981e-03 9.2848e-04 5.6576e-04 3.2394e-04 1.7391e-04
1.5390 0.71468 0.80446 0.89739

2−8 6.8523e-03 3.9013e-03 1.9354e-03 7.3687e-04 2.2450e-04
0.81263 1.0113 1.3931 1.7147

2−12 6.8523e-03 3.9116e-03 2.0788e-03 1.0701e-03 5.4269e-04
0.80883 0.91201 0.95801 0.97955 -

2−16 6.8523e-03 3.9116e-03 2.0788e-03 1.0701e-03 5.4269e-04
0.80883 0.91201 0.95801 0.97955 -

2−20 6.8523e-03 3.9116e-03 2.0788e-03 1.0701e-03 5.4269e-04
0.80883 0.91201 0.95801 0.97955 -

2−24 6.8523e-03 3.9116e-03 2.0788e-03 1.0701e-03 5.4269e-04
0.80883 0.91201 0.95801 0.97955 -

2−28 6.8523e-03 3.9116e-03 2.0788e-03 1.0701e-03 5.4269e-04
0.80883 0.91201 0.95801 0.97955 -

EN,∆t 6.8523e-03 3.9116e-03 2.0788e-03 1.0701e-03 5.4269e-04
pN,∆t 0.80883 0.91201 0.95801 0.97955 -

Table 4. Comparison EN,∆tε for Example 5.2.

ε ↓ N = M = 16 N = 32 N = 64 N = 128 N = 256
Present method
2−0 2.3281e-04 1.7793e-04 1.0848e-04 5.9446e-05 3.1063e-05
2−4 2.6790e-03 1.2062e-03 7.3732e-04 4.1419e-04 2.1984e-04
2−8 6.6457e-03 3.8619e-03 1.9363e-03 7.4430e-04 2.3021e-04
2−12 6.6458e-03 3.8721e-03 2.0782e-03 1.0751e-03 5.4655e-04
2−16 6.6458e-03 3.8721e-03 2.0782e-03 1.0751e-03 5.4655e-04
2−20 6.6458e-03 3.8721e-03 2.0782e-03 1.0751e-03 5.4655e-04
Result in [2]
2−0 2.3950e-02 1.7664e-02 1.1228e-02 6.4886e-03 3.5334e-03
2−4 4.8048e-02 2.7869e-02 1.4847e-02 7.6292e-03 3.8619e-03
2−8 4.9006e-02 2.8622e-02 1.5142e-02 7.7170e-03 3.8852e-03
2−12 4.9006e-02 2.8622e-02 1.5141e-02 7.7173e-03 3.8858e-03
2−16 4.9006e-02 2.8622e-02 1.5141e-02 7.7173e-03 3.8858e-03
2−20 4.9006e-02 2.8622e-02 1.5141e-02 7.7173e-03 3.8858e-03

6. Conclusion

A robust numerical study is formulated to solve a one-dimensional singularly perturbed parabolic convection-
diffusion with a large time delay. The scheme is based on the implicit Euler scheme in the time dimension and the
exponentially fitted B-spline collocation scheme in the spatial dimension, both on a uniform grid. An error estimate
for the numerical scheme is constructed and is accurate of order O

(
∆t+ h2

)
. Numerous numerical experiments were

carried out to prove the robustness of the proposed method. The method turns out to be uniformly convergent
and is also unconditionally stable. The advantage of the proposed method lies in its simplicity and accuracy. The
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Figure 1. Solution based on scheme (3.6) for Example 5.1 for different values of ε and T (A) ε = 1
and (B) ε = 2−16
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Figure 2. Solution based on scheme (3.6) for Example 5.2 for different values of ε and T (A) ε = 1
and (B) ε = 2−16

numerical results show that the present method achieves higher accuracy than many other boundary-layer resolving
finite difference methods.
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Figure 3. Scheme (3.6) solution of Example 5.1 on (A) and Example 5.2 on (B) for different values
of T and ε = 2−12.
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Figure 4. Example 5.1 on (A), Example 5.2 and on (B) Log-Log scale plot of the maximum absolute
error for different values of ε.
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