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Abstract 

Simulation-based test pattern generation methods are an interesting alternative to deterministic methods because of lower 

time complexity. In these methods, test patterns are evaluated and those with higher efficiency are selected. Traditionally, 

test pattern selection is based on fault coverage, which is an accurate merit indicator, but its calculation is time-consuming. 

Instead of fault coverage, approximate indicators can be used to assess efficiency of test patterns. In this paper, an 

approximate indicator called APXD is proposed, which is more efficient than existing approximate methods. Our 

experimental results show that APXD indicator has a strong correlation with fault coverage. In addition, APXD simulation 

is 1900x, 63x, and 56x faster than serial, sampling, and parallel fault simulation, respectively. Exploiting APXD indicator 

instead of fault coverage, in a pruning-based test generation method, leads to about 700x, 24.2x, and 18.4x speedup, 

respectively compared to pruning based methods that use serial, sampling, or parallel fault simulation for test pattern 

evaluation, at fault coverage of 80%. Speedup at fault coverage of 95% is about 111.3x, 11.1, and 3.6x, respectively. 

While, the use of APXD indicator instead of fault coverage increases the number of test vectors by 2% at most, confirming 

the efficiency of APXD indicator compared with probabilistic and statistical approximate indicators. 
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1. Introduction 

Rapid technology scaling, emergence of complex digital 

designs, and their widespread use in critical domains 

have made accurate and rapid testing of digital systems 

more important every day. Digital system testing requires 

generation of an efficient set of test patterns so that it can 

detect manufacturing defects in the shortest possible time 

and with the highest level of confidence. Automatic test 

pattern generation (ATPG) methods can be categorized 

into two groups: 1) deterministic methods, 2) simulation-

based methods. In deterministic test generation methods, 

each time, one fault is targeted and by using analytical 

methods, appropriate test vector(s) are generated to 

detect that fault. Fault coverage (FC) is high in 

deterministic methods, but they have a high time 

complexity. In simulation-based ATPG methods, a 

specific fault is not targeted. Instead, a set of test patterns 

is generated by random or pseudorandom approaches, 

then these test patterns are evaluated in terms of their 

fault coverage, and finally the best test patterns are 

determined and inserted in the final test set [1-2]. 

Simulation-based approaches are more scalable 

compared with deterministic methods. In addition, these 

methods can be used to generate software-based self-test 

(SBST) routines for processor components. It should be 

noted that due to functional and timing constraints, 

generation of SBST routines for processor components 

using deterministic test generation methods is not 

straightforward [3]. 

Inspired from software test data generation 

approaches [4-5], metaheuristic techniques can 

extensively be exploited in simulation-based ATPG 

methods to enhance test quality and speedup test 

generation process. 

Metaheuristic approaches based on Genetic algorithm 

(GA) are commonly used for automatic test pattern 

generation. In [6] a GA-based test pattern generation 

approach is presented, which uses the amount of signal 

activity as the fitness function. In another study [7], FC 

of test patterns is used as the fitness function of genetic 

algorithm. Consequently, fault coverage is improved, but 

time of test generation increases. In [8], by generating a 
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good initial population for GA using D-algorithm, an 

acceptable fault coverage in a shorter time is achieved, 

compared with similar methods. In [9], by providing 

diversity in the population using Immune concepts, the 

volume of generated test set is deceased. The GA-based 

ATPG approaches are used for generating test for 

reversible circuits [10], diagnostic test for transition 

faults [11], and for multiple faults models [12]. 

Several approaches use ACO [13], and PSO [14-16] 

for test generation. These methods have shorter 

generation time and lower test quality compared with 

GA-based ATPG methods. 

In simulation-based ATPG methods, fault coverage is 

commonly used to evaluate test patterns. Fault coverage 

is a reliable and accurate indicator, but it requires fault 

simulation, which is very time-consuming. Numerous 

studies have been conducted to accelerate fault 

simulation. These studies can be classified into several 

categories: 1) Methods that use hardware accelerators 

and FPGAs, 2) Methods that use multicore and manycore 

processors, 3) Methods that use GPUs, 4) Mixed-level 

and hierarchical simulation method 5) Approximate and 

statistical methods. 

Some researchers have used reconfigurable hardware 

to accelerate fault simulation. In [17], by embedding 

extra hardware, it is possible to emulate a fault in the 

circuit. In this study, fault injection is done dynamically 

using a shift register. The number of bits in this shift 

register is equal to the number of injectable faults. 

Adjusting each bit of this shift register to one will activate 

a fault in the circuit. The most important limitation of this 

method is that as the number of faults increases, the 

overhead of extra hardware increases. In [18], fault 

injection is performed by partial reconfiguration of 

FPGA, and by adjusting LUT reconfiguration vectors 

using small binary files. One of disadvantages of this 

method is the need to reconfigure the FPGA with each 

fault injection, although this reconfiguration is partial. In 

addition, fault injection is performed at LUT level, which 

is not exactly consistent with the gate-level fault injection. 

Another research [19] also uses the idea of partial 

reconfiguration, but to improve performance, 

reconfiguration is done using an embedded processor. 

Hardware methods used for acceleration of fault 

simulation have limited application and cannot replace 

the software methods of fault simulation, especially in 

simulation-based ATPG approaches. 

Other research has used the processing power of 

multicore and manycore processors to speed up fault 

simulation algorithms. In [20], a fault simulator is 

implemented on Intel's Single-Chip Cloud Computer, 

which is able to balance load distribution on the 

processing cores during the runtime. This fault simulator 

uses message passing buffers to exchange data between 

cores. This fault simulator is 45x faster than serial fault 

simulation. In another study [21], a parallel fault 

simulator is implemented on the 20-core Intel Xeon 

Processor with the aim of speedup scalability. 

Implementation is done using C++ and OpenMP. The 

results of this study show an average acceleration of 51x. 

Experimental results show that as the number of cores 

increases, the acceleration increases monotonically. 

Another way to speed up fault simulation is to use 

GPUs. In [22], GPU processing power is used for fault 

simulation. In this method, block parallelism, fault 

parallelism, and pattern parallelism are used 

simultaneously. In [23], a fault simulator has been 

implemented on a GPU to create fault dictionary and 

enable fault diagnosis. In this study, pattern-parallelism 

and fault-parallelism have been used, and on average, 8x 

speedup is achieved compared to CPU implementation. 

In another study [24] a switch-level fault simulator is 

implemented on a GPU. The purpose of this fault 

simulator is to accurately examine the behaviour of 

CMOS cells under parametric faults and process 

variations, with the aim of test validation. This fault 

simulator exploits parallelism at the level of cell, stimuli, 

fault, and circuit instances. This simulator is able to 

achieve 243x speedup compared to gate-level timing 

simulation. 

Recently, several researchers proposed mixed-level 

and hierarchical fault simulation. They use a mixed-

model of a circuit consisting of high-level and gate-level 

components. Faults are injected in gate-level components 

and a pre and post synthesis co-simulation is performed 

[25-27]. Although these methods can significantly 

accelerate fault simulation, but cannot simulate general 

circuits, and are specifically designed and implemented 

for a predetermined class of digital circuits such as 

processors, or neural networks.   

Another way to deal with time complexity in fault 

simulation is to use approximate or statistical methods. 

In [28], instead of accurately calculating fault coverage 

of a test set, the confidence level that fault coverage is 

higher than FCmin is calculated by using a fault sampling 

method. In another study [29], instead of using the usual 

algorithms for fault simulation, local fault simulation is 

used to estimate fault coverage. Experimental results of 

this study show that their proposed method is about ten 

times faster than the exact fault simulation method, but 

in comparison with fault sampling method (which is a 

fault simulation on a random subset of total faults), it is 

slower, although it is more accurate. In another study [30], 

a merit indicator that is based on probabilistic circuit 

analysis approach, is proposed for test pattern evaluation. 

This probabilistic indicator has an acceptable correlation 

with FC in most circuits, and can be calculated quickly. 

In this paper, we propose an approximate indicator to 

substitute fault coverage in test pattern evaluation, which 

is more efficient than the previous ones. The rest of this 

article is organized in this way. In Section 2, problem 

statement and our contributions are presented. In Section 

3, background concepts are introduced. In this section 

two approximate fault simulation methods, i.e., sampling 

fault simulation, and probabilistic fault simulation are 

briefly presented. Additionally, the concept of correlation 

coefficient and sample-to-sample variability, are 

explained. In Section 4, the proposed merit indicator, 

APXD, and the way it is calculated are investigated. 

Besides, a straightforward method for pruning-based test 

generation by use of approximate indicators, is provided. 

In Section 5, APXD indicator is evaluated in terms of 

correlation with fault coverage, and execution time, and 

then, it is compared with sampling and probabilistic fault 

simulation approaches. Moreover, in this section, the 
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effect of using APXD as a substitute for fault coverage, 

in a pruning-based test generation algorithm, is examined 

in terms of test generation time and quality of test. Finally, 

in Section 6, we conclude the paper. In addition, a list of 

symbols and notations used in this paper is presented in 

the appendix. 

2. Problem statement and our contributions 

Simulation-based test pattern generation methods are 

promising solutions for ATPG of digital circuits. In this 

approach, random or pseudo random test patterns are 

generated on the fly. Traditionally, these test patterns are 

evaluated in terms of their fault coverage, and those with 

the highest coverage are selected and inserted in the final 

test set.  

Test pattern evaluation according to their fault 

coverage needs numerous runs of fault simulation that is 

very time consuming. A promising solution to this 

challenge is using an approximate measure instead of 

fault coverage. Several approximate and statistical 

measures are proposed in the literature [28-30]. In this 

paper we propose an approximate measure for test pattern 

evaluation that can be calculated much faster than fault 

coverage, and still has a strong correlation with fault 

coverage. This measure, approximately counts the 

number of faults that each test pattern can detect. We call 

this approximate indicator as APXD (Approximate 

number of detected faults). Our evaluation shows that 

APXD outperforms previous approximate and statistical 

measures, in terms of accuracy and speed. To show 

effectiveness of APXD, we have implemented a 

simulation based test generation method that exploits 

APXD instead of fault coverage for test pattern evaluation. 

Our evaluations show that using APXD indicator instead 

of FC, in test generation algorithms, leads to a significant 

speedup with a negligible effect on the number of test 

vectors in the generated test set. Details of APXD, and 

our evaluations are presented in section 4 and Section 5. 

 

3. Background 

One way to tackle time complexity in calculation of fault 

coverage is to use approximate methods to estimate fault 

coverage, which can be beneficial especially in 

simulation-based ATPG methods. In simulation-based 

ATPG methods, several test patterns are generated using 

pure random or metaheuristic methods. Then, these test 

patterns are evaluated according to their FC, and the best 

ones are determined and included in the test set. Due to 

the inherent uncertainty that exists in generation and 

selection of test patterns in simulation-based ATPG 

methods, instead of FC, which is an exact but time-

consuming indicator, an approximate and fast 

calculatable measure can be used to rate and choose more 

efficient test patterns. Two approximate methods for 

estimating fault coverage are sampling fault simulation 

[28, 31] and probabilistic fault simulation [30]. 

In sampling fault Simulation, instead of the fault 

simulation being performed for all faults in the fault list, 

a subset of faults, which we call sample set or sample, is 

selected and fault simulation is done only for this subset. 

By performing sampling fault simulation for a test pattern, 

a value called sampling fault coverage (SMP_FC) will be 

obtained, which is an approximation for the fault 

coverage of that test pattern. The smaller the sample size, 

the lower the accuracy of this approximation, but the 

higher the speedup. 

In probabilistic fault simulation, circuit analysis is 

performed using probabilistic circuit analysis methods 

[30, 32]. Probabilistic analysis provides the possibility of 

simultaneous injection of faults. Traditionally in single 

stuck-at fault model, faults are injected one by one and 

one round of fault simulation is performed for each fault. 

In contrast, in probabilistic simulation method, a test 

pattern is applied to the circuit inputs, and all faults are 

injected simultaneously into the circuit according to the 

probabilistic fault injection rules. Then, by performing 

only one round of probabilistic simulation, effect of all 

faults are cumulated in probabilistic values of the primary 

outputs. Finally, according to probabilistic values of 

primary outputs, a measure called PMI (Probabilistic 

Merit Indicator) is calculated for each test pattern. The 

higher the PMI value for a test pattern, the higher the 

probability that the test pattern can detect a large number 

of faults. 

Efficiency of each approximate indicator, that is used 

to substitute fault coverage, depends on two factors: 1) 

the speedup obtained from the approximate indicator, 2) 

the accuracy of that approximate indicator in evaluating 

test patterns, and selecting a pattern with a higher fault 

coverage. Equation (1) can be used to calculate speedup. 

In this equation, ti(fc) is the time required to calculate the 

exact fault coverage of the ith test pattern, and ti(apx) is 

the time needed for calculation of the approximate 

indicator for the same test pattern. It should be noted that 

test patterns are generated randomly. 
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To check accuracy of an approximate indicator, the 

correlation coefficient of that indicator with fault 

coverage can be considered. For this purpose, a random 

set of n test patterns is generated. For each test pattern in 
this random set, fault coverage and the desired 

approximate indicator are calculated (assuming, the test 

pattern is applied to primary inputs of a benchmark 

circuit). In this way, n values will be obtained for fault 

coverage, and other n values for the approximate 

indicator. It is now possible to calculate correlation 

coefficient between the approximate indicator and fault 

coverage, using statistical methods, and by considering 

these two n-value vectors. 
Two important methods for calculating correlation 

coefficient are Spearman's rank correlation coefficient, 

and Pearson's correlation coefficient [33]. It should be 

noted that selecting suitable type of correlation 

coefficient depends on the type of variables. When there 

is at least one ordinal scale variable, Spearman's 

coefficient is a better choice [33]. Equation (2) shows 

how to calculate Spearman's correlation coefficient. In 

this equation, n represents the number of data and di is 

difference in the order of variables. 
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Another point to consider when calculating the 

correlation coefficient between two variables is the value 

of n, i.e. the number of samples, which we call sample 

size. In our case, the sample size means the number of 

test patterns for which fault coverage and the 

approximate indicator are calculated to determine 

correlation coefficient. One important question is how 

sample size should be selected, that the correlation 

coefficient obtained from that sample has an acceptable 

correspondence with the case where all possible test 

patterns for that circuit are used to calculate the 

correlation coefficient. In response, the sample size 

should be chosen so that sample-to-sample variability is 

small. Sample-to-sample variability shows the maximum 

difference between a desired parameter (such as 

correlation coefficient calculated for a sample set) and 

the mean value of that parameter, if we repeat the 

experiment several times. Equation (3) shows how to 

calculate sample-to-sample variability. In this equation 

pi is the value of a desired parameter calculated for the ith 

sample set, and pavg is the average value of all pi values 

obtained from various sample sets. 
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4. Proposed approximate indicator for quick 

evaluation of test patterns 

In this section, we first propose an approximate indicator 

for quick assessment of test patterns, called APXD 

(approximate number of detected faults). Then, in order 

to evaluate APXD, a straightforward test generation 

method, which exploits APXD for test pattern pruning is 

suggested. 

 

4.1. APXD Approximate Indicator 

APXD indicator (approximate number of detected faults) 

is a measure representing approximate number of faults 

that a test pattern can detect, considering all or a subset 

of single stuck-at faults in a circuit. This indicator can be 

calculated much faster than traditional fault coverage 

measure, and therefore its use for evaluation of candidate 

test patterns will significantly speed up simulation-based 

ATPG algorithms. 

In APXD simulation, two values are assigned to each 

line (L) of a circuit. A logical value, which we denote by 

VL, and an approximate indicator, which we call APXDL. 

If L is output of a gate, VL is determined by logical 

calculations on logical values of the gate inputs. APXDL 
represents the number of faults that are activated by a test 

pattern, and their effect propagate to Line L. In APXD 

simulation, circuit analysis starts from the primary inputs 

(PI), and by passing each gate, V and APXD for the output 

of each gate is calculated. Simulation continues until V 

and APXD for all primary outputs (PO) are determined. 

In more detail, a test pattern is applied to the primary 

inputs (PI) of the circuit. VPI is then determined for all 

primary inputs directly according to the bit values of the 

test pattern. After that, APXDPI is calculated for each 

primary input according to the bit values of the test 

pattern, and considering the faults in the collapsed fault 

list. In fact, if fault “PI stuck-at (V'PI)”, which we display 

as PI: SA(V'PI), is in the fault list then APXDPI = 1 and 

otherwise APXDPI = 0. After determining V and APXD 

values for the primary inputs, the circuit analysis 

continues by passing through the gates and moving 

towards the primary outputs of the circuit. For each gate 

whose V and APXD of its inputs are determined, V, and 

APXD of the gate output can be calculated.  

Calculation of APXD for output of a gate depends on 

the type of that gate and the logical values of inputs of 

that gate. Fig. 1 summarizes how APXD indicator is 

calculated for outputs of AND, NAND, OR, and NOR 

gates. As an example, let us look at AND gate. Suppose 

that all inputs of AND gate have a non-controlling value 

(controlling value for AND gate is 0). In this case, any 

fault whose effect reaches one of the gate inputs will 

propagate to the gate output. If we assume that each fault 

propagates to at most one input of a gate (meaning that 

reconvergent fanouts of the circuit are ignored), we can 

conclude that the number of faults that propagate to the 

output of the AND gate is equal to the sum of the faults 

propagated to inputs of the AND gate. This means that in 

this case, APXD of the output can be calculated by adding 

APXD of all inputs of the AND gate. However, it should 

be noted that fault y: SA(V'y) will also be activated at the 

output of the gate (y is output line of the AND gate). 

Therefore, if this fault is in the faults list, APXDy should 

be increased by one.  

 

 
Fig. 1. Calculating APXD indicator for AND, NAND, OR, and 

NOR 

 

The second mode for the AND gate is when exactly one 

of the gate inputs (ith input) has a controlling value. In 

this case, any fault whose effect reaches other inputs of 

the gate will be blocked due to the controlling value on 

the ith input, and its effect will not propagate to the gate 

output. Therefore, only faults propagated to the ith input 

pass through the gate, and propagate to the gate output. 

Therefore, in this case, APXD of the output is equal to the 

APXD of the ith input. Of course, the fault activated in the 

gate output must be considered, if it is in the fault list.  

The third case is when more than one of the gate 

inputs have a controlling value. In this case, no fault can 

pass through the gate, because there is always an input 
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with a controlling value that blocks the effect of all faults. 

Fig. 1 summarizes  APXD calculation rules for AND, 

NAND, OR, and NOR Gates. The rules are quite similar 

for these gates except that the controlling value for OR 

and NOR gates is 1 and for AND, and NAND gates is 0. 

Fig. 2 shows how to calculate APXD for output of 

NOT and BUF. Any fault whose effect reaches the input 

of NOT and BUF, passes through these primitives, and 

propagates to the output. Therefore, APXD of output is 

equal to APXD of input of these primitives.  

 

 
Fig. 2. Calculating APXD indicator for NOT, and BUF 

Fig. 3 shows the rules of APXD calculation for FANOUT, 

XOR, and XNOR. In the case of a FANOUT, when a fault 

reaches the stem, that fault propagate to all branches. 

Therefore, having APXD of the stem, APXD of all 

branches can be obtained. In the case of XOR and XNOR, 

we can say that any fault that reaches an input of these 

gates, propagates to the output, if we ignore reconvergent 

fanouts in the circuit for simplification. Therefore, APXD 

of output will be equal to the sum of APXD of all inputs 

in an XOR, or XNOR gate. However, we emphasize again 

that the fault activated at the gate output must also be 

considered in all cases.  

After performing one round of APXD simulation, 

APXD indicator will be obtained for all primary outputs 

of the circuit. The higher the APXD indicator in more 

circuit POs, the more detected faults by the test pattern 

applied to the primary inputs of the circuit is expected. 

Based on this intuition, we propose Equation (4) as an 

approximate indicator to determine the efficiency of a 

test pattern in identifying more faults.  

 

 
Fig. 3. Calculating APXD indicator for XOR, XNOR, and 

FANOUT 

In this Equation, APXDTP is APXD indicator for test 

pattern TP, and APXDPOi is APXD indicator for the 

primary output POi. In Section 5, accuracy of APXD 

indicator in detecting high efficient test patterns is 

discussed. 

 

(4) iTP PO

i

APXD APXD
 

 

4.2. Time Complexity of APXD calculation 

The advantage of APXD is the higher speed in calculation 

of APXD compared with FC. In serial fault simulation, 

each time, one fault is injected into the circuit, and by 

performing one round of simulation for each fault, it is 

determined whether that fault is detected by the test 

pattern. Therefore, if we show the number of faults as f, 

and the number of primitive gates in the netlist of a circuit 

as g, in serial fault simulation, f rounds of fault simulation 

is needed to evaluate a test pattern, and each round of 

simulation needs g operations. Equation (5) shows time 

complexity of serial fault simulation. 

(5) ( . .) ( )O Serial F S O f g   

In parallel fault simulation, instead of a separate 

simulation for each fault, a group of faults is checked 

simultaneously in one round of parallel fault simulation. 

The number of faults in a group depends on the word 

length of the processor. If we show the word length of the 

processor as wl (a constant value), in parallel fault 

simulation, f / wl rounds of parallel fault simulation is 

required to check f faults, each round consisting g 

operations. Equation (6) shows time complexity of 

parallel fault simulation. 

(6) ( . .) ( )O Parallel F S O f g   

In APXD simulation, a test pattern is applied to the 

primary inputs of a circuit, and by performing only one 

round of APXD simulation (one round of g operations), 

the number of faults that this test pattern can detect is 

calculated approximately. Therefore, APXD fault 

simulation is expected to be much faster than serial and 

parallel fault simulation methods, and this advantage 

increases in circuits with higher number of faults. 

Equation (7) shows time complexity of APXD fault 

simulation. 

(7) ( ) ( )O APXD O g  

 

4.3. Test Generation Based on Approximate Indicators 

As mentioned, APXD indicator provides the 

capability of quick test pattern evaluation and can lead to 

speed up in simulation-based ATPG methods. Fig. 4 

shows APXD_TG test generation method that uses APXD 

approximate indicator to prune random test patterns, and 

select more efficient ones to insert in the final test set. In 

APXD_TG, a set of random test patterns is initially 

generated and inserted in a set called curSet (Fig. 4,  stage 

02). The number of these test patterns is denoted by 

parameter setSize. APXD indicator is then calculated for 

all test patterns in curSet, and a test pattern with the 

highest APXD value is selected (Fig. 4, stage 03, and 04). 

We call this test pattern bestTP. In the next step, bestTP 

is applied to the primary inputs of the circuit, and then 

parallel fault simulation is performed on the circuit (Fig. 

4, stage 06). After parallel fault simulation, the number 

of faults detected by bestTP (denoted by nNewDet) is 

determined. If the number of new faults identified by 

bestTP exceeds our expected level, this test pattern is 

accepted and inserted in the final test set (Fig. 4, stage 
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08). The expectation level is adjusted by a parameter 

called expDet. The process of generating random test 

patterns and evaluating and accepting them continues 

until the generated test set provides our desired fault 

coverage (finalFC), or the algorithm reaches a point 

where, after several consecutive iterations, no progress is 

made in detecting new faults. In APXD_TG algorithm, 

setSize and expDet parameters can be used to adjust level 

of severity in accepting new test vectors. As the value of 

these parameters increases, test quality improves, but test 

generation time increases.  

 

Algorithm: APXD_TG 

Input:         netlist of a circuit 

Output:      testset for the input circuit 

Parameter: maxItt (maximum number of iterations) 

Parameter: expDet (expected number of detected faults) 

Parameter: finalFC (a desired value for fault coverage) 

Parameter: setSize (number of random test patterns) 

00: START 

01: itt = 0; FC = 0;  
02: Generate a set of random test patterns and insert them in a 

set called curSet (the number of random test patterns is 

equal to parameter setSize) 
03: Calculate APXD for all test patterns in curSet. 

04: Find a test pattern in curSet with the highest value of APXD 

(name it bestTP). 
05: Apply bestTP to the primary inputs (PIs) of the input circuit. 

06: Perform parallel fault simulation on the circuit and find the 

number of faults detected by bestTP (denoted by nNewDet).  
07: IF (nNewDet < expDet)  

           GOTO stage 11 

08: Accept bestTP as a good test pattern and insert it in the final 

testset 

09: drop all faults detected by bestTP from the fault list 

10: update FC (fault coverage of all accepted test patterns) 

11: IF (FC < finalFC) AND (i < maxItt) 
             GOTO stage 02 
12: END  

 
 

Fig. 4. APXD_TG test generation algorithm 

As mentioned, in APXD_TG algorithm, evaluation and 

pruning of test patterns are based on APXD indicator. 

Instead of APXD, the exact indicator, fault coverage (FC), 

or approximate indicators such as PMI (approximate 

indicator obtained from probabilistic fault simulation 

[30]), and SMP_FC (approximate indicator obtained 

from sampling fault simulation), can be used to select test 

patterns. In Section 5, the results of test generation based 

on APXD indicator, in terms of test quality and test 

generation time, are compared with the results of test 

generation based on other merit indicators, FC, PMI, and 

SMP_FC, and its superiority is shown.  

Another point to note is that APXD_TG is a simple 

test generation algorithm based on the concept of test 

pattern pruning. In this algorithm, test pattern generation 

is performed pure randomly. The results of this algorithm, 

presented in Section 5, confirm the efficiency of APXD 

indicator in identification of efficient test patterns. 

 However, it should be emphasized that the use of 

metaheuristic concepts in generation of pseudo random 

test patterns can lead to improved test quality. For 

example, APXD can be used as a fitness function in a 

simulation-based test generation algorithm based on 

Genetic Algorithm (GA). In this approach, initially, 

several test patterns can be generated in a random fashion 

or using a deterministic test generation method to 

produce a good initial population for the GA-based 

solution. Then, fitness of each test pattern of the current 

generation is evaluated according to their APXD measure, 

and more efficient test patterns are selected stochastically 

using a proper selection mechanism such as Roulette 

wheel selection. The selected test patterns are used to 

generate the next generation by proper mutation and 

crossover operations. The process is terminated when a 

desirable fault coverage is achieved. We will work on this 

concept in a future work. 

 

5. Experimental results 

In this section, the proposed approximate indicator, 

APXD, is evaluated in terms of simulation speed, and 

accuracy. For this purpose, APXD fault simulation time 

is compared with two exact methods, serial fault 

simulation, and parallel fault simulation as well as two 

approximate methods, probabilistic fault simulation [30], 

and sampling fault simulation that were introduced in 

Section 3. Besides, to evaluate the accuracy of APXD in 

finding efficient test patterns, the correlation coefficient 

between APXD indicator and fault coverage is calculated 

in different circuits and is compared with the correlation 

coefficient of other approximate indicators. Experiments 

have been performed on several circuits of ISCAS 85 

benchmarks.  

In order to be able to evaluate the proposed indicator 

(APXD) and compare it with the existing methods, we 

have designed and implemented a novel fault simulator 

with the capability of performing various exact and 

approximate fault simulations. We call this simulation 

engine, LPSim (Logical-Probabilistic) simulator. LPSim 

is implemented in C++, and is based on an object-

oriented intermediate format called PLEX (Probabilistic 

and Logical Executable Model). LPSim allows logical 

simulation, and exact fault simulation in serial and 

parallel form. It provides the capability of probabilistic, 

sampling, and also APXD fault simulation. LPSim is 

easily extendable and various test methods can rapidly be 

developed and evaluated on this platform. 

In all experiments related to calculating correlation 

coefficients, sample test sets include 2000 random test 

vectors. Each experiment is repeated for ten different 

sample test sets, and the results are the average of 10 

different runs. Also, to show that sample sets are of 

sufficient size, maximum sample-to-sample variation is 

calculated in each experiment. 

Table I shows correlation coefficient between the 

proposed approximate indicator, i.e. APXD, and fault 

coverage. Besides, the correlation coefficient of the 

probabilistic indicator (PRB) and approximate sampling 

indicator (SMP) with fault coverage are presented in this 

table. Results for SMP indicator are presented in three 

sampling rates of 3%, 5%, and 10%. 

The results in Table I show that APXD indicator has 

a strong correlation with fault coverage, in all circuits. 

Therefore, it is an excellent alternative to fault coverage. 

The results also confirm that in all circuits, the correlation 

coefficient of APXD is higher than the correlation 

coefficient of PRB and SMP indicators. Another point is 

that the correlation coefficient of APXD indicator is in the 

range of strong correlation for all circuits while, the 

correlation coefficient of the other approximate 
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indicators is sometimes in the range of moderate or even 

weak correlation. 

Fig. 5 shows the maximum sample-to-sample 

variation in experiments of correlation coefficient. As we 

can see, the value of this parameter in experiments for all 

circuits is at most about 4%, and this confirms that the 

sample size selected to calculate the correlation 

coefficients (which is equal to 2000) is appropriate and 

the results are reasonably accurate. 

 

 
Table I. Correlation coefficient between approximate indicators 

and exact fault coverage 

Method 
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C432 0.96 0.83 0.48 0.51 0.75 

C499 0.95 0.93 0.54 0.86 0.88 

C880 0.93 0.88 0.51 0.57 0.63 

C1355 0.97 0.93 0.61 0.87 0.91 

C1908 0.94 0.86 0.74 0.85 0.87 

C3540 0.84 0.58 0.54 0.54 0.67 

C5315 0.97 0.9 0.82 0.86 0.89 

C6288 0.83 0.63 0.19 0.21 0.61 

C7552 0.89 0.43 0.42 0.52 0.65 

Avg. 0.92 0.77 0.54 0.64 0.76 

 

 

 

 

 
Fig. 5. Maximum Sample-to-Sample Variation  

 

 

 
Fig. 6. Normalized fault simulation time  

 

In the case of approximate indicators, another parameter 

that is important is the time required to calculate that 

indicator. Fig. 6 demonstrates the normalized execution 

time for different fault simulation methods. These 

diagrams show that execution time in APXD and PRB 

methods is much shorter than that in serial, parallel, and 

sampling methods.  

Fig. 7 shows the same graphs on a logarithmic scale 

for a better comparison. As can be seen in this figure, the 

execution time in APXD method is close to PRB and 

slightly less. However, as mentioned before, correlation 

coefficient of APXD is significantly better than that of 

PRB method. This figure also shows that for larger 

circuits, APXD simulation is three orders of magnitude 

faster than serial fault simulation, and one order of 

magnitude faster than parallel fault simulation. 

 
Fig. 7. Normalized fault simulation time in logarithmic scale  

 

 
Fig. 8. Speedup in various fault simulation 

methods over serial fault simulation 
Fig. 8 display the speedup resulting from different fault 

simulation methods compared to serial fault simulation 

in a logarithmic scale. The figure shows that the speedup 

in APXD method is slightly higher than the PRB method, 

but it is considerably higher than other methods. 

Additionally, in parallel and sampling fault simulation 

methods, as the number of faults increases, the speedup 

reaches a constant value, while in APXD method, as the 

number of faults grows, the resulting speedup also 

increases. This observation confirms that APXD 

approach is more scalable than parallel and sampling 

methods.  

Fig. 9 shows average speedup in various fault 

simulation methods compared to serial fault simulation. 

It can be concluded, from Fig. 9, that APXD simulation 

is on average 1898x, 63x, 56x, 1.2x faster than serial, 

sampling (with sampling rate of 3%), parallel, and PRB 

fault simulation. It was discussed in Section 4.2 that 

APXD indicator can be used to accelerate simulation-

based ATPG methods, and APXD_TG was proposed in 

this direction. In this section, the efficiency of APXD_TG 

is examined in terms of test generation time, and quality 

of test set that is generated. Then, it is compared with 

traditional methods that use fault coverage to evaluate 

and choose test patterns. Comparison is also done with 

other methods that use probabilistic [30] or statistical 

indicators for test pattern evaluation. 
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Fig. 9. Average speed up in various fault simulation methods 

over serial fault simulation 

In all next tables and figures, different pruning-based test 

generation methods are denoted as APXD_TG, PRB_TG, 

and SMP_TG, PAR_TG, and SER_TG. APXD_TG, and 

PRB_TG are two pruning-based test generation methods 

that use APXD approximate indicator (see Section 4) and 

PMI (see Section 3) to evaluate candidate test patterns, 

respectively. SMP_TG is a pruning-based test generation 

method that uses approximate SMP_FC indicator (see 

Section 3) to evaluate test patterns. The number shown 

next to SMP_TG method implies the fault sampling rate. 

SMP_TG_10%, for example, shows that fault simulation 

is performed on 10% of all faults. Both PAR_TG and 

SER_TG methods use the exact merit indicator, i.e. fault 

coverage (FC), to evaluate efficiency of test patterns. In 

PAR_TG method, parallel fault simulation is performed 

to calculate FC for a test pattern, while SER_TG performs 

serial fault simulation. 

Table II, III, and IV show the normalized execution 

time in different test generation methods at fault 

coverages of 80%, 90%, and 95%, respectively. The 

results show that the test generation time in APXD_TG, 

in all fault coverages, is much shorter than other methods, 

other than PRB_TG. The average test generation time in 

PRB_TG method is slightly higher than APXD_TG, but 

it is not much different. In order to better understand the 

results of these tables, Fig. 10 and Fig. 11 show the 

average speedup obtained from different test generation 

methods, in comparison with SER_TG (in logarithmic 

scale) and PAR_TG (in linear scale) methods, 

respectively. These results confirm that APXD_TG is 

about 695.9x, 419.4x, and 111.3x faster than SER_TG, 

respectively at fault coverages of 80%, 90%, and 95%. 

Besides, APXD_TG is 18.4, 11.5x, 3.6x faster than 

PAR_TG, at the above mentioned fault coverages. 

 

 

 
Fig. 10. Speedup in various test generation methods over 

SER_TG 

 

 

 
Fig. 11. Speedup in various test generation methods over 

PAR_TG 

 

 

Table II. Normalized test generation time in fault coverage of 80% 

Method 
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APXD_TG 3.0 1.0 3.7 3.2 8.1 33.5 25.7 8.0 42.7 14.3 

PRB_TG [30] 3.3 1.0 3.5 2.5 6.4 39.8 27.5 8.9 41.6 14.9 

SMP_TG_3% 11.5 4.7 23.6 27.2 74.5 491.0 691.0 334.0 1453.8 345.7 

SMP_TG_5% 13.9 7.7 31.7 38.2 116.9 711.6 1412.6 436.8 2117.5 543.0 

SMP_TG_10% 25.1 12.0 52.7 68.6 191.4 1433.9 2064.2 976.9 4001.5 980.7 

PAR_TG 7.1 3.1 13.9 20.7 58.5 367.5 509.0 295.7 1088.0 262.6 

SER_TG 190.7 109.8 453.3 691.8 1816.6 11835.3 18373.0 9900.6 46267.3 9959.8 

 

 
Table III. Normalized test generation time in fault coverage of 90% 

Method 
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APXD_TG 4.3 3.4 6.4 11.7 20.1 62.2 46.0 11.6 136.6 33.6 

PRB_TG [30] 5.4 4.0 5.7 9.1 19.5 68.4 46.0 13.9 132.1 33.8 

SMP_TG_3% 15.1 10.5 33.3 55.6 144.7 729.7 872.3 369.7 2728.0 551.0 

SMP_TG_5% 18.4 14.1 43.5 75.5 204.4 1028.3 1773.1 499.7 4016.4 852.6 

SMP_TG_10% 30.7 22.0 66.6 135.2 323.6 2321.7 2781.5 1069.9 7068.2 1535.5 

PAR_TG 9.6 7.4 18.5 41.8 95.9 517.5 643.5 336.8 1801.7 385.9 

SER_TG 217.5 169.9 537.5 1188.4 2748.5 15787.1 22745.0 11076.2 72377.4 14094.2 
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Table IV. Normalized test generation time in fault coverage of 95% 

Method 
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APXD_TG 5.9 7.8 8.8 22.1 33.8 112.6 69.1 14.9 1124.9 155.5 

PRB_TG [30] 5.8 7.6 8.5 19.0 125.6 1029.1 72.0 19.8 862.2 238.9 

SMP_TG_3% 18.4 17.9 40.1 79.2 184.7 - 1067.2 399.9 - 200.8 

SMP_TG_5% 21.8 19.8 53.4 106.4 258.0 1535.1 1978.4 544.8 10205.3 1635.9 

SMP_TG_10% 34.6 30.6 78.5 179.9 407.8 2970.9 3213.8 1124.8 16169.6 2690.1 

PAR_TG 11.8 13.4 22.6 60.0 122.7 644.6 730.7 358.5 3043.0 556.4 

SER_TG 178.8 224.6 571.5 1499.1 3248.1 18540.0 25106.5 11683.6 94806.1 17317.6 

Table V, VI, and VII show the number of test vectors 

produced by different test generation methods in faults 

coverage of 80%, 90%, and 95%, respectively. Column 

TPR (Test Pattern Ratio) in these tables has been 

calculated according to Equation (8). In this equation, 

nTVapx is the number of test vectors in a final test set 

produced by a test generation method that exploits an 

approximate indicator for test vector evaluation, i.e. 

APXD_TG, PRB_TG, and SMP_TG methods. nTVFC is 

the number of test vectors in a test set produced by a test 

generation method that uses fault coverage to prune test 

vectors, i.e. SER_TG, or PAR_TG. 

 

(8) 
apx

FC

nTV
TPR

nTV


 
The results of Table V, VI, and VII make it possible to 

compare the accuracy and efficiency of test generation 

based on approximate indicators. The results show that 

APXD_TG method is significantly more efficient than 

other approximate methods, namely PRB_TG and 

SMP_TG. APXD_TG, with only 2%, 1%, and 2% 

increase in the number of test patterns (in three fault 

coverage of 80%, 90%, and 95%, respectively), is able to 

achieve a fault coverage equal to the coverage of 

PAR_TG and SER_TG methods. 

 

6. Discussion and Conclusion 

Simulation-based ATPG methods are interested 

because of their lower execution time. In these methods, 

fault coverage indicator is traditionally used to evaluate 

test patterns and eliminate patterns with lower efficiency. 

Although test patterns can accurately be evaluated by 

their fault coverage index, but calculation of fault 

coverage requires fault simulation, which is very time-

consuming. Instead of fault coverage, approximate 

indicators can be used to evaluate test patterns. 

Calculation of approximate indicators is much faster than 

fault coverage. 

In this paper, we propose an approximate indicator 

called APXD as a suitable alternative to fault coverage 

indicator. In APXD simulation, all faults are considered 

simultaneously. This means that by only one round of 

simulation for each test pattern, the number of faults that 

can be detected by that test pattern is calculated 

approximately. In APXD simulation, in addition to 

propagating logical values from inputs to output of gates, 

having the number of faults propagated to inputs of a gate, 

the number of faults whose effect propagate to the output 

of that gate is also calculated.  

 

Table V. Test set size in fault coverage of 80% 
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C432 13 15 18 16 17 13 13 

C499 4 5 5 6 5 4 4 

C880 9 11 14 13 11 9 9 

C1355 7 7 8 8 7 7 7 

C1908 13 14 16 18 15 13 13 

C3540 27 30 36 34 30 25 25 

C5315 14 19 19 18 16 14 14 

C6288 4 6 5 4 5 4 4 

C7552 16 20 21 20 18 16 16 

TPR 1.02 1.21 1.35 1.3 1.18 1 1 

 

Table VI. Test set size in fault coverage of 90% 
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C432 19 25 28 27 26 19 19 

C499 14 18 19 18 17 14 14 

C880 16 18 27 25 19 15 15 

C1355 26 26 31 31 29 26 26 

C1908 33 41 50 50 41 33 33 

C3540 59 62 80 74 71 60 60 

C5315 26 33 33 32 32 25 25 

C6288 6 8 7 6 7 6 6 

C7552 53 56 73 72 58 51 51 

TPR 1.01 1.15 1.4 1.35 1.2 1 1 

 

Table VII. Test set size in fault coverage of 95% 
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C432 26 37 40 38 36 26 26 

C499 30 36 40 32 32 30 30 

C880 22 27 39 40 30 22 22 

C1355 49 54 58 60 54 49 49 

C1908 56 69 82 83 71 56 56 

C3540 105 106 - 152 129 101 101 

C5315 40 53 61 53 54 38 38 

C6288 8 15 10 9 9 8 8 

C7552 154 167 - 183 171 151 151 

TPR 1.02 1.17 1.44 1.35 1.22 1 1 

 

Our experimental results demonstrate that APXD 

approximation is strongly correlated with fault coverage 

indicator. Compared to other approximate methods such 

as probabilistic and statistical methods, APXD indicator 

has a higher correlation coefficient with fault coverage. 

In terms of execution time, our experiments show that 

APXD indicator can be calculated about 1900x and 56x 

faster than fault coverage, using serial, and parallel fault 

simulation, respectively. Additionally, APXD simulation 

is about 63x faster than sampling fault simulation with a 

sampling rate of 3%. The short execution time and 

accuracy of APXD indicator confirms that this indicator 

is a good candidate to replace fault coverage indicator in 

simulation-based ATPG methods. Our experimental 

results show that in a pruning-based test generation 

method, the use of APXD indicator instead of fault 

coverage, in fault coverage of 80%, can lead to a speedup 

of about 700x, 24.2x, and 18.4x compared with serial, 

sampling, and parallel methods, respectively. Speedup 

values obtained in the 95% fault coverage are 111.3x, 

11.1x, and 3.6x. Besides, using APXD indicator, instead 

of fault coverage, for test pattern pruning, leads to at most 

2% increase in the final test set size. 

It is worth mentioning the proposed test generation 

method, APXD_TG, is not adapted and evaluated for test 

generation of sequential circuits. Although the method 

can be adapted for sequential circuits, but this is not a big 

issue. Practically, sequential circuits are turned into 

combinational circuits with design for test techniques, 

and existing combinational test generation methods are 

applied to them. 

Additionally, we have exploited the proposed 

approximate indicator, called APXD, in a pruning based 

test generation method to show its effectiveness. In this 

approach test patterns are generated in a pure random 

fashion and then evaluated and pruned according to their 

APXD value. Using metaheuristic approaches to generate 

more efficient pseudo random test patterns can improve 

the quality of the final test set as well as test generation 

time, which we will consider as our future work.     
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8. Appendix 

Table VIII demonstrates a list of symbols and notations 

used in this paper. 

 

Table VIII. List of Symbols and notations 

Symbol Remarks 

ATPG Automatic Test Pattern Generation 

GA Genetic Algorithm 

FS Fault Simulation 

APXD Approximate number of detected faults 

TP Test Pattern 

FC Fault Coverage 

SMP_FC sampling fault coverage 

PMI Probabilistic Merit Indicator 

L A line in a circuit netlist 

VL Logical value of line L 

APXDL APXD of line L 

PI Primary Input 

PO Primary Output 

APXD_TG Test generation based on APXD indicator 

PRB_TG Test generation based on PMI 

SMP_TG Test generation based on sampling 

SER_TG 
Test generation based on serial fault 

simulation 

PAR_TG 
Test generation based on parallel fault 

simulation 

 

 

 

 

 

 

 


