
Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

Approximate Fault Simulation for Quick

Evaluation of Test Patterns in Digital Circuit

Testing

Leili Khosravi 1, Arezoo Kamran 2*

Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran

1leyli.khosravi536@gmail.com, 2kamran@razi.ac.ir*

*Corresponding author

Received: 2021-07-28

Accepted: 2022-01-19

Abstract

Simulation-based test pattern generation methods are an interesting alternative to deterministic methods because of lower

time complexity. In these methods, test patterns are evaluated and those with higher efficiency are selected. Traditionally,

test pattern selection is based on fault coverage, which is an accurate merit indicator, but its calculation is time-consuming.

Instead of fault coverage, approximate indicators can be used to assess efficiency of test patterns. In this paper, an

approximate indicator called APXD is proposed, which is more efficient than existing approximate methods. Our

experimental results show that APXD indicator has a strong correlation with fault coverage. In addition, APXD simulation

is 1900x, 63x, and 56x faster than serial, sampling, and parallel fault simulation, respectively. Exploiting APXD indicator

instead of fault coverage, in a pruning-based test generation method, leads to about 700x, 24.2x, and 18.4x speedup,

respectively compared to pruning based methods that use serial, sampling, or parallel fault simulation for test pattern

evaluation, at fault coverage of 80%. Speedup at fault coverage of 95% is about 111.3x, 11.1, and 3.6x, respectively.

While, the use of APXD indicator instead of fault coverage increases the number of test vectors by 2% at most, confirming

the efficiency of APXD indicator compared with probabilistic and statistical approximate indicators.

Keywords

Approximate fault simulation, Test pattern generation, Probabilistic fault simulation, Fault sampling.

1. Introduction

Rapid technology scaling, emergence of complex digital

designs, and their widespread use in critical domains

have made accurate and rapid testing of digital systems

more important every day. Digital system testing requires

generation of an efficient set of test patterns so that it can

detect manufacturing defects in the shortest possible time

and with the highest level of confidence. Automatic test

pattern generation (ATPG) methods can be categorized

into two groups: 1) deterministic methods, 2) simulation-

based methods. In deterministic test generation methods,

each time, one fault is targeted and by using analytical

methods, appropriate test vector(s) are generated to

detect that fault. Fault coverage (FC) is high in

deterministic methods, but they have a high time

complexity. In simulation-based ATPG methods, a

specific fault is not targeted. Instead, a set of test patterns

is generated by random or pseudorandom approaches,

then these test patterns are evaluated in terms of their

fault coverage, and finally the best test patterns are

determined and inserted in the final test set [1-2].

Simulation-based approaches are more scalable

compared with deterministic methods. In addition, these

methods can be used to generate software-based self-test

(SBST) routines for processor components. It should be

noted that due to functional and timing constraints,

generation of SBST routines for processor components

using deterministic test generation methods is not

straightforward [3].

Inspired from software test data generation

approaches [4-5], metaheuristic techniques can

extensively be exploited in simulation-based ATPG

methods to enhance test quality and speedup test

generation process.

Metaheuristic approaches based on Genetic algorithm

(GA) are commonly used for automatic test pattern

generation. In [6] a GA-based test pattern generation

approach is presented, which uses the amount of signal

activity as the fitness function. In another study [7], FC

of test patterns is used as the fitness function of genetic

algorithm. Consequently, fault coverage is improved, but

time of test generation increases. In [8], by generating a

mailto:leyli.khosravi536@gmail.com
mailto:kamran@razi.ac.ir

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

348

good initial population for GA using D-algorithm, an

acceptable fault coverage in a shorter time is achieved,

compared with similar methods. In [9], by providing

diversity in the population using Immune concepts, the

volume of generated test set is deceased. The GA-based

ATPG approaches are used for generating test for

reversible circuits [10], diagnostic test for transition

faults [11], and for multiple faults models [12].

Several approaches use ACO [13], and PSO [14-16]

for test generation. These methods have shorter

generation time and lower test quality compared with

GA-based ATPG methods.

In simulation-based ATPG methods, fault coverage is

commonly used to evaluate test patterns. Fault coverage

is a reliable and accurate indicator, but it requires fault

simulation, which is very time-consuming. Numerous

studies have been conducted to accelerate fault

simulation. These studies can be classified into several

categories: 1) Methods that use hardware accelerators

and FPGAs, 2) Methods that use multicore and manycore

processors, 3) Methods that use GPUs, 4) Mixed-level

and hierarchical simulation method 5) Approximate and

statistical methods.

Some researchers have used reconfigurable hardware

to accelerate fault simulation. In [17], by embedding

extra hardware, it is possible to emulate a fault in the

circuit. In this study, fault injection is done dynamically

using a shift register. The number of bits in this shift

register is equal to the number of injectable faults.

Adjusting each bit of this shift register to one will activate

a fault in the circuit. The most important limitation of this

method is that as the number of faults increases, the

overhead of extra hardware increases. In [18], fault

injection is performed by partial reconfiguration of

FPGA, and by adjusting LUT reconfiguration vectors

using small binary files. One of disadvantages of this

method is the need to reconfigure the FPGA with each

fault injection, although this reconfiguration is partial. In

addition, fault injection is performed at LUT level, which

is not exactly consistent with the gate-level fault injection.

Another research [19] also uses the idea of partial

reconfiguration, but to improve performance,

reconfiguration is done using an embedded processor.

Hardware methods used for acceleration of fault

simulation have limited application and cannot replace

the software methods of fault simulation, especially in

simulation-based ATPG approaches.

Other research has used the processing power of

multicore and manycore processors to speed up fault

simulation algorithms. In [20], a fault simulator is

implemented on Intel's Single-Chip Cloud Computer,

which is able to balance load distribution on the

processing cores during the runtime. This fault simulator

uses message passing buffers to exchange data between

cores. This fault simulator is 45x faster than serial fault

simulation. In another study [21], a parallel fault

simulator is implemented on the 20-core Intel Xeon

Processor with the aim of speedup scalability.

Implementation is done using C++ and OpenMP. The

results of this study show an average acceleration of 51x.

Experimental results show that as the number of cores

increases, the acceleration increases monotonically.

Another way to speed up fault simulation is to use

GPUs. In [22], GPU processing power is used for fault

simulation. In this method, block parallelism, fault

parallelism, and pattern parallelism are used

simultaneously. In [23], a fault simulator has been

implemented on a GPU to create fault dictionary and

enable fault diagnosis. In this study, pattern-parallelism

and fault-parallelism have been used, and on average, 8x

speedup is achieved compared to CPU implementation.

In another study [24] a switch-level fault simulator is

implemented on a GPU. The purpose of this fault

simulator is to accurately examine the behaviour of

CMOS cells under parametric faults and process

variations, with the aim of test validation. This fault

simulator exploits parallelism at the level of cell, stimuli,

fault, and circuit instances. This simulator is able to

achieve 243x speedup compared to gate-level timing

simulation.

Recently, several researchers proposed mixed-level

and hierarchical fault simulation. They use a mixed-

model of a circuit consisting of high-level and gate-level

components. Faults are injected in gate-level components

and a pre and post synthesis co-simulation is performed

[25-27]. Although these methods can significantly

accelerate fault simulation, but cannot simulate general

circuits, and are specifically designed and implemented

for a predetermined class of digital circuits such as

processors, or neural networks.

Another way to deal with time complexity in fault

simulation is to use approximate or statistical methods.

In [28], instead of accurately calculating fault coverage

of a test set, the confidence level that fault coverage is

higher than FCmin is calculated by using a fault sampling

method. In another study [29], instead of using the usual

algorithms for fault simulation, local fault simulation is

used to estimate fault coverage. Experimental results of

this study show that their proposed method is about ten

times faster than the exact fault simulation method, but

in comparison with fault sampling method (which is a

fault simulation on a random subset of total faults), it is

slower, although it is more accurate. In another study [30],

a merit indicator that is based on probabilistic circuit

analysis approach, is proposed for test pattern evaluation.

This probabilistic indicator has an acceptable correlation

with FC in most circuits, and can be calculated quickly.

In this paper, we propose an approximate indicator to

substitute fault coverage in test pattern evaluation, which

is more efficient than the previous ones. The rest of this

article is organized in this way. In Section 2, problem

statement and our contributions are presented. In Section

3, background concepts are introduced. In this section

two approximate fault simulation methods, i.e., sampling

fault simulation, and probabilistic fault simulation are

briefly presented. Additionally, the concept of correlation

coefficient and sample-to-sample variability, are

explained. In Section 4, the proposed merit indicator,

APXD, and the way it is calculated are investigated.

Besides, a straightforward method for pruning-based test

generation by use of approximate indicators, is provided.

In Section 5, APXD indicator is evaluated in terms of

correlation with fault coverage, and execution time, and

then, it is compared with sampling and probabilistic fault

simulation approaches. Moreover, in this section, the

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

349

effect of using APXD as a substitute for fault coverage,

in a pruning-based test generation algorithm, is examined

in terms of test generation time and quality of test. Finally,

in Section 6, we conclude the paper. In addition, a list of

symbols and notations used in this paper is presented in

the appendix.

2. Problem statement and our contributions

Simulation-based test pattern generation methods are

promising solutions for ATPG of digital circuits. In this

approach, random or pseudo random test patterns are

generated on the fly. Traditionally, these test patterns are

evaluated in terms of their fault coverage, and those with

the highest coverage are selected and inserted in the final

test set.

Test pattern evaluation according to their fault

coverage needs numerous runs of fault simulation that is

very time consuming. A promising solution to this

challenge is using an approximate measure instead of

fault coverage. Several approximate and statistical

measures are proposed in the literature [28-30]. In this

paper we propose an approximate measure for test pattern

evaluation that can be calculated much faster than fault

coverage, and still has a strong correlation with fault

coverage. This measure, approximately counts the

number of faults that each test pattern can detect. We call

this approximate indicator as APXD (Approximate

number of detected faults). Our evaluation shows that

APXD outperforms previous approximate and statistical

measures, in terms of accuracy and speed. To show

effectiveness of APXD, we have implemented a

simulation based test generation method that exploits

APXD instead of fault coverage for test pattern evaluation.

Our evaluations show that using APXD indicator instead

of FC, in test generation algorithms, leads to a significant

speedup with a negligible effect on the number of test

vectors in the generated test set. Details of APXD, and

our evaluations are presented in section 4 and Section 5.

3. Background

One way to tackle time complexity in calculation of fault

coverage is to use approximate methods to estimate fault

coverage, which can be beneficial especially in

simulation-based ATPG methods. In simulation-based

ATPG methods, several test patterns are generated using

pure random or metaheuristic methods. Then, these test

patterns are evaluated according to their FC, and the best

ones are determined and included in the test set. Due to

the inherent uncertainty that exists in generation and

selection of test patterns in simulation-based ATPG

methods, instead of FC, which is an exact but time-

consuming indicator, an approximate and fast

calculatable measure can be used to rate and choose more

efficient test patterns. Two approximate methods for

estimating fault coverage are sampling fault simulation

[28, 31] and probabilistic fault simulation [30].

In sampling fault Simulation, instead of the fault

simulation being performed for all faults in the fault list,

a subset of faults, which we call sample set or sample, is

selected and fault simulation is done only for this subset.

By performing sampling fault simulation for a test pattern,

a value called sampling fault coverage (SMP_FC) will be

obtained, which is an approximation for the fault

coverage of that test pattern. The smaller the sample size,

the lower the accuracy of this approximation, but the

higher the speedup.

In probabilistic fault simulation, circuit analysis is

performed using probabilistic circuit analysis methods

[30, 32]. Probabilistic analysis provides the possibility of

simultaneous injection of faults. Traditionally in single

stuck-at fault model, faults are injected one by one and

one round of fault simulation is performed for each fault.

In contrast, in probabilistic simulation method, a test

pattern is applied to the circuit inputs, and all faults are

injected simultaneously into the circuit according to the

probabilistic fault injection rules. Then, by performing

only one round of probabilistic simulation, effect of all

faults are cumulated in probabilistic values of the primary

outputs. Finally, according to probabilistic values of

primary outputs, a measure called PMI (Probabilistic

Merit Indicator) is calculated for each test pattern. The

higher the PMI value for a test pattern, the higher the

probability that the test pattern can detect a large number

of faults.

Efficiency of each approximate indicator, that is used

to substitute fault coverage, depends on two factors: 1)

the speedup obtained from the approximate indicator, 2)

the accuracy of that approximate indicator in evaluating

test patterns, and selecting a pattern with a higher fault

coverage. Equation (1) can be used to calculate speedup.

In this equation, ti(fc) is the time required to calculate the

exact fault coverage of the ith test pattern, and ti(apx) is

the time needed for calculation of the approximate

indicator for the same test pattern. It should be noted that

test patterns are generated randomly.

(1)

()

()

i

i

i

i

t fc

Speedup
t apx

To check accuracy of an approximate indicator, the

correlation coefficient of that indicator with fault

coverage can be considered. For this purpose, a random

set of n test patterns is generated. For each test pattern in
this random set, fault coverage and the desired

approximate indicator are calculated (assuming, the test

pattern is applied to primary inputs of a benchmark

circuit). In this way, n values will be obtained for fault

coverage, and other n values for the approximate

indicator. It is now possible to calculate correlation

coefficient between the approximate indicator and fault

coverage, using statistical methods, and by considering

these two n-value vectors.
Two important methods for calculating correlation

coefficient are Spearman's rank correlation coefficient,

and Pearson's correlation coefficient [33]. It should be

noted that selecting suitable type of correlation

coefficient depends on the type of variables. When there

is at least one ordinal scale variable, Spearman's

coefficient is a better choice [33]. Equation (2) shows

how to calculate Spearman's correlation coefficient. In

this equation, n represents the number of data and di is

difference in the order of variables.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

350

(2)

2

1

2

6

1
(1)

n

i

i
s

d

corr
n n

Another point to consider when calculating the

correlation coefficient between two variables is the value

of n, i.e. the number of samples, which we call sample

size. In our case, the sample size means the number of

test patterns for which fault coverage and the

approximate indicator are calculated to determine

correlation coefficient. One important question is how

sample size should be selected, that the correlation

coefficient obtained from that sample has an acceptable

correspondence with the case where all possible test

patterns for that circuit are used to calculate the

correlation coefficient. In response, the sample size

should be chosen so that sample-to-sample variability is

small. Sample-to-sample variability shows the maximum

difference between a desired parameter (such as

correlation coefficient calculated for a sample set) and

the mean value of that parameter, if we repeat the

experiment several times. Equation (3) shows how to

calculate sample-to-sample variability. In this equation

pi is the value of a desired parameter calculated for the ith

sample set, and pavg is the average value of all pi values

obtained from various sample sets.

(3)

()
2

i avg

avg

Max p p
S SV

p

4. Proposed approximate indicator for quick

evaluation of test patterns

In this section, we first propose an approximate indicator

for quick assessment of test patterns, called APXD

(approximate number of detected faults). Then, in order

to evaluate APXD, a straightforward test generation

method, which exploits APXD for test pattern pruning is

suggested.

4.1. APXD Approximate Indicator

APXD indicator (approximate number of detected faults)

is a measure representing approximate number of faults

that a test pattern can detect, considering all or a subset

of single stuck-at faults in a circuit. This indicator can be

calculated much faster than traditional fault coverage

measure, and therefore its use for evaluation of candidate

test patterns will significantly speed up simulation-based

ATPG algorithms.

In APXD simulation, two values are assigned to each

line (L) of a circuit. A logical value, which we denote by

VL, and an approximate indicator, which we call APXDL.

If L is output of a gate, VL is determined by logical

calculations on logical values of the gate inputs. APXDL
represents the number of faults that are activated by a test

pattern, and their effect propagate to Line L. In APXD

simulation, circuit analysis starts from the primary inputs

(PI), and by passing each gate, V and APXD for the output

of each gate is calculated. Simulation continues until V

and APXD for all primary outputs (PO) are determined.

In more detail, a test pattern is applied to the primary

inputs (PI) of the circuit. VPI is then determined for all

primary inputs directly according to the bit values of the

test pattern. After that, APXDPI is calculated for each

primary input according to the bit values of the test

pattern, and considering the faults in the collapsed fault

list. In fact, if fault “PI stuck-at (V'PI)”, which we display

as PI: SA(V'PI), is in the fault list then APXDPI = 1 and

otherwise APXDPI = 0. After determining V and APXD

values for the primary inputs, the circuit analysis

continues by passing through the gates and moving

towards the primary outputs of the circuit. For each gate

whose V and APXD of its inputs are determined, V, and

APXD of the gate output can be calculated.

Calculation of APXD for output of a gate depends on

the type of that gate and the logical values of inputs of

that gate. Fig. 1 summarizes how APXD indicator is

calculated for outputs of AND, NAND, OR, and NOR

gates. As an example, let us look at AND gate. Suppose

that all inputs of AND gate have a non-controlling value

(controlling value for AND gate is 0). In this case, any

fault whose effect reaches one of the gate inputs will

propagate to the gate output. If we assume that each fault

propagates to at most one input of a gate (meaning that

reconvergent fanouts of the circuit are ignored), we can

conclude that the number of faults that propagate to the

output of the AND gate is equal to the sum of the faults

propagated to inputs of the AND gate. This means that in

this case, APXD of the output can be calculated by adding

APXD of all inputs of the AND gate. However, it should

be noted that fault y: SA(V'y) will also be activated at the

output of the gate (y is output line of the AND gate).

Therefore, if this fault is in the faults list, APXDy should

be increased by one.

Fig. 1. Calculating APXD indicator for AND, NAND, OR, and

NOR

The second mode for the AND gate is when exactly one

of the gate inputs (ith input) has a controlling value. In

this case, any fault whose effect reaches other inputs of

the gate will be blocked due to the controlling value on

the ith input, and its effect will not propagate to the gate

output. Therefore, only faults propagated to the ith input

pass through the gate, and propagate to the gate output.

Therefore, in this case, APXD of the output is equal to the

APXD of the ith input. Of course, the fault activated in the

gate output must be considered, if it is in the fault list.

The third case is when more than one of the gate

inputs have a controlling value. In this case, no fault can

pass through the gate, because there is always an input

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

351

with a controlling value that blocks the effect of all faults.

Fig. 1 summarizes APXD calculation rules for AND,

NAND, OR, and NOR Gates. The rules are quite similar

for these gates except that the controlling value for OR

and NOR gates is 1 and for AND, and NAND gates is 0.

Fig. 2 shows how to calculate APXD for output of

NOT and BUF. Any fault whose effect reaches the input

of NOT and BUF, passes through these primitives, and

propagates to the output. Therefore, APXD of output is

equal to APXD of input of these primitives.

Fig. 2. Calculating APXD indicator for NOT, and BUF

Fig. 3 shows the rules of APXD calculation for FANOUT,

XOR, and XNOR. In the case of a FANOUT, when a fault

reaches the stem, that fault propagate to all branches.

Therefore, having APXD of the stem, APXD of all

branches can be obtained. In the case of XOR and XNOR,

we can say that any fault that reaches an input of these

gates, propagates to the output, if we ignore reconvergent

fanouts in the circuit for simplification. Therefore, APXD

of output will be equal to the sum of APXD of all inputs

in an XOR, or XNOR gate. However, we emphasize again

that the fault activated at the gate output must also be

considered in all cases.

After performing one round of APXD simulation,

APXD indicator will be obtained for all primary outputs

of the circuit. The higher the APXD indicator in more

circuit POs, the more detected faults by the test pattern

applied to the primary inputs of the circuit is expected.

Based on this intuition, we propose Equation (4) as an

approximate indicator to determine the efficiency of a

test pattern in identifying more faults.

Fig. 3. Calculating APXD indicator for XOR, XNOR, and

FANOUT

In this Equation, APXDTP is APXD indicator for test

pattern TP, and APXDPOi is APXD indicator for the

primary output POi. In Section 5, accuracy of APXD

indicator in detecting high efficient test patterns is

discussed.

(4) iTP PO

i

APXD APXD

4.2. Time Complexity of APXD calculation

The advantage of APXD is the higher speed in calculation

of APXD compared with FC. In serial fault simulation,

each time, one fault is injected into the circuit, and by

performing one round of simulation for each fault, it is

determined whether that fault is detected by the test

pattern. Therefore, if we show the number of faults as f,

and the number of primitive gates in the netlist of a circuit

as g, in serial fault simulation, f rounds of fault simulation

is needed to evaluate a test pattern, and each round of

simulation needs g operations. Equation (5) shows time

complexity of serial fault simulation.

(5) (. .) ()O Serial F S O f g

In parallel fault simulation, instead of a separate

simulation for each fault, a group of faults is checked

simultaneously in one round of parallel fault simulation.

The number of faults in a group depends on the word

length of the processor. If we show the word length of the

processor as wl (a constant value), in parallel fault

simulation, f / wl rounds of parallel fault simulation is

required to check f faults, each round consisting g

operations. Equation (6) shows time complexity of

parallel fault simulation.

(6) (. .) ()O Parallel F S O f g

In APXD simulation, a test pattern is applied to the

primary inputs of a circuit, and by performing only one

round of APXD simulation (one round of g operations),

the number of faults that this test pattern can detect is

calculated approximately. Therefore, APXD fault

simulation is expected to be much faster than serial and

parallel fault simulation methods, and this advantage

increases in circuits with higher number of faults.

Equation (7) shows time complexity of APXD fault

simulation.

(7) () ()O APXD O g

4.3. Test Generation Based on Approximate Indicators

As mentioned, APXD indicator provides the

capability of quick test pattern evaluation and can lead to

speed up in simulation-based ATPG methods. Fig. 4

shows APXD_TG test generation method that uses APXD

approximate indicator to prune random test patterns, and

select more efficient ones to insert in the final test set. In

APXD_TG, a set of random test patterns is initially

generated and inserted in a set called curSet (Fig. 4, stage

02). The number of these test patterns is denoted by

parameter setSize. APXD indicator is then calculated for

all test patterns in curSet, and a test pattern with the

highest APXD value is selected (Fig. 4, stage 03, and 04).

We call this test pattern bestTP. In the next step, bestTP

is applied to the primary inputs of the circuit, and then

parallel fault simulation is performed on the circuit (Fig.

4, stage 06). After parallel fault simulation, the number

of faults detected by bestTP (denoted by nNewDet) is

determined. If the number of new faults identified by

bestTP exceeds our expected level, this test pattern is

accepted and inserted in the final test set (Fig. 4, stage

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

352

08). The expectation level is adjusted by a parameter

called expDet. The process of generating random test

patterns and evaluating and accepting them continues

until the generated test set provides our desired fault

coverage (finalFC), or the algorithm reaches a point

where, after several consecutive iterations, no progress is

made in detecting new faults. In APXD_TG algorithm,

setSize and expDet parameters can be used to adjust level

of severity in accepting new test vectors. As the value of

these parameters increases, test quality improves, but test

generation time increases.

Algorithm: APXD_TG

Input: netlist of a circuit

Output: testset for the input circuit

Parameter: maxItt (maximum number of iterations)

Parameter: expDet (expected number of detected faults)

Parameter: finalFC (a desired value for fault coverage)

Parameter: setSize (number of random test patterns)

00: START

01: itt = 0; FC = 0;
02: Generate a set of random test patterns and insert them in a

set called curSet (the number of random test patterns is

equal to parameter setSize)
03: Calculate APXD for all test patterns in curSet.

04: Find a test pattern in curSet with the highest value of APXD

(name it bestTP).
05: Apply bestTP to the primary inputs (PIs) of the input circuit.

06: Perform parallel fault simulation on the circuit and find the

number of faults detected by bestTP (denoted by nNewDet).
07: IF (nNewDet < expDet)

 GOTO stage 11

08: Accept bestTP as a good test pattern and insert it in the final

testset

09: drop all faults detected by bestTP from the fault list

10: update FC (fault coverage of all accepted test patterns)

11: IF (FC < finalFC) AND (i < maxItt)
 GOTO stage 02
12: END

Fig. 4. APXD_TG test generation algorithm

As mentioned, in APXD_TG algorithm, evaluation and

pruning of test patterns are based on APXD indicator.

Instead of APXD, the exact indicator, fault coverage (FC),

or approximate indicators such as PMI (approximate

indicator obtained from probabilistic fault simulation

[30]), and SMP_FC (approximate indicator obtained

from sampling fault simulation), can be used to select test

patterns. In Section 5, the results of test generation based

on APXD indicator, in terms of test quality and test

generation time, are compared with the results of test

generation based on other merit indicators, FC, PMI, and

SMP_FC, and its superiority is shown.

Another point to note is that APXD_TG is a simple

test generation algorithm based on the concept of test

pattern pruning. In this algorithm, test pattern generation

is performed pure randomly. The results of this algorithm,

presented in Section 5, confirm the efficiency of APXD

indicator in identification of efficient test patterns.

 However, it should be emphasized that the use of

metaheuristic concepts in generation of pseudo random

test patterns can lead to improved test quality. For

example, APXD can be used as a fitness function in a

simulation-based test generation algorithm based on

Genetic Algorithm (GA). In this approach, initially,

several test patterns can be generated in a random fashion

or using a deterministic test generation method to

produce a good initial population for the GA-based

solution. Then, fitness of each test pattern of the current

generation is evaluated according to their APXD measure,

and more efficient test patterns are selected stochastically

using a proper selection mechanism such as Roulette

wheel selection. The selected test patterns are used to

generate the next generation by proper mutation and

crossover operations. The process is terminated when a

desirable fault coverage is achieved. We will work on this

concept in a future work.

5. Experimental results

In this section, the proposed approximate indicator,

APXD, is evaluated in terms of simulation speed, and

accuracy. For this purpose, APXD fault simulation time

is compared with two exact methods, serial fault

simulation, and parallel fault simulation as well as two

approximate methods, probabilistic fault simulation [30],

and sampling fault simulation that were introduced in

Section 3. Besides, to evaluate the accuracy of APXD in

finding efficient test patterns, the correlation coefficient

between APXD indicator and fault coverage is calculated

in different circuits and is compared with the correlation

coefficient of other approximate indicators. Experiments

have been performed on several circuits of ISCAS 85

benchmarks.

In order to be able to evaluate the proposed indicator

(APXD) and compare it with the existing methods, we

have designed and implemented a novel fault simulator

with the capability of performing various exact and

approximate fault simulations. We call this simulation

engine, LPSim (Logical-Probabilistic) simulator. LPSim

is implemented in C++, and is based on an object-

oriented intermediate format called PLEX (Probabilistic

and Logical Executable Model). LPSim allows logical

simulation, and exact fault simulation in serial and

parallel form. It provides the capability of probabilistic,

sampling, and also APXD fault simulation. LPSim is

easily extendable and various test methods can rapidly be

developed and evaluated on this platform.

In all experiments related to calculating correlation

coefficients, sample test sets include 2000 random test

vectors. Each experiment is repeated for ten different

sample test sets, and the results are the average of 10

different runs. Also, to show that sample sets are of

sufficient size, maximum sample-to-sample variation is

calculated in each experiment.

Table I shows correlation coefficient between the

proposed approximate indicator, i.e. APXD, and fault

coverage. Besides, the correlation coefficient of the

probabilistic indicator (PRB) and approximate sampling

indicator (SMP) with fault coverage are presented in this

table. Results for SMP indicator are presented in three

sampling rates of 3%, 5%, and 10%.

The results in Table I show that APXD indicator has

a strong correlation with fault coverage, in all circuits.

Therefore, it is an excellent alternative to fault coverage.

The results also confirm that in all circuits, the correlation

coefficient of APXD is higher than the correlation

coefficient of PRB and SMP indicators. Another point is

that the correlation coefficient of APXD indicator is in the

range of strong correlation for all circuits while, the

correlation coefficient of the other approximate

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

353

indicators is sometimes in the range of moderate or even

weak correlation.

Fig. 5 shows the maximum sample-to-sample

variation in experiments of correlation coefficient. As we

can see, the value of this parameter in experiments for all

circuits is at most about 4%, and this confirms that the

sample size selected to calculate the correlation

coefficients (which is equal to 2000) is appropriate and

the results are reasonably accurate.

Table I. Correlation coefficient between approximate indicators

and exact fault coverage

Method

A
P

X
D

P
R

B
 [

3
0

]

S
M

P
_
3

%

S
M

P
_
5

%

S
M

P
_
1

0
%

C432 0.96 0.83 0.48 0.51 0.75

C499 0.95 0.93 0.54 0.86 0.88

C880 0.93 0.88 0.51 0.57 0.63

C1355 0.97 0.93 0.61 0.87 0.91

C1908 0.94 0.86 0.74 0.85 0.87

C3540 0.84 0.58 0.54 0.54 0.67

C5315 0.97 0.9 0.82 0.86 0.89

C6288 0.83 0.63 0.19 0.21 0.61

C7552 0.89 0.43 0.42 0.52 0.65

Avg. 0.92 0.77 0.54 0.64 0.76

Fig. 5. Maximum Sample-to-Sample Variation

Fig. 6. Normalized fault simulation time

In the case of approximate indicators, another parameter

that is important is the time required to calculate that

indicator. Fig. 6 demonstrates the normalized execution

time for different fault simulation methods. These

diagrams show that execution time in APXD and PRB

methods is much shorter than that in serial, parallel, and

sampling methods.

Fig. 7 shows the same graphs on a logarithmic scale

for a better comparison. As can be seen in this figure, the

execution time in APXD method is close to PRB and

slightly less. However, as mentioned before, correlation

coefficient of APXD is significantly better than that of

PRB method. This figure also shows that for larger

circuits, APXD simulation is three orders of magnitude

faster than serial fault simulation, and one order of

magnitude faster than parallel fault simulation.

Fig. 7. Normalized fault simulation time in logarithmic scale

Fig. 8. Speedup in various fault simulation

methods over serial fault simulation
Fig. 8 display the speedup resulting from different fault

simulation methods compared to serial fault simulation

in a logarithmic scale. The figure shows that the speedup

in APXD method is slightly higher than the PRB method,

but it is considerably higher than other methods.

Additionally, in parallel and sampling fault simulation

methods, as the number of faults increases, the speedup

reaches a constant value, while in APXD method, as the

number of faults grows, the resulting speedup also

increases. This observation confirms that APXD

approach is more scalable than parallel and sampling

methods.

Fig. 9 shows average speedup in various fault

simulation methods compared to serial fault simulation.

It can be concluded, from Fig. 9, that APXD simulation

is on average 1898x, 63x, 56x, 1.2x faster than serial,

sampling (with sampling rate of 3%), parallel, and PRB

fault simulation. It was discussed in Section 4.2 that

APXD indicator can be used to accelerate simulation-

based ATPG methods, and APXD_TG was proposed in

this direction. In this section, the efficiency of APXD_TG

is examined in terms of test generation time, and quality

of test set that is generated. Then, it is compared with

traditional methods that use fault coverage to evaluate

and choose test patterns. Comparison is also done with

other methods that use probabilistic [30] or statistical

indicators for test pattern evaluation.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

354

Fig. 9. Average speed up in various fault simulation methods

over serial fault simulation

In all next tables and figures, different pruning-based test

generation methods are denoted as APXD_TG, PRB_TG,

and SMP_TG, PAR_TG, and SER_TG. APXD_TG, and

PRB_TG are two pruning-based test generation methods

that use APXD approximate indicator (see Section 4) and

PMI (see Section 3) to evaluate candidate test patterns,

respectively. SMP_TG is a pruning-based test generation

method that uses approximate SMP_FC indicator (see

Section 3) to evaluate test patterns. The number shown

next to SMP_TG method implies the fault sampling rate.

SMP_TG_10%, for example, shows that fault simulation

is performed on 10% of all faults. Both PAR_TG and

SER_TG methods use the exact merit indicator, i.e. fault

coverage (FC), to evaluate efficiency of test patterns. In

PAR_TG method, parallel fault simulation is performed

to calculate FC for a test pattern, while SER_TG performs

serial fault simulation.

Table II, III, and IV show the normalized execution

time in different test generation methods at fault

coverages of 80%, 90%, and 95%, respectively. The

results show that the test generation time in APXD_TG,

in all fault coverages, is much shorter than other methods,

other than PRB_TG. The average test generation time in

PRB_TG method is slightly higher than APXD_TG, but

it is not much different. In order to better understand the

results of these tables, Fig. 10 and Fig. 11 show the

average speedup obtained from different test generation

methods, in comparison with SER_TG (in logarithmic

scale) and PAR_TG (in linear scale) methods,

respectively. These results confirm that APXD_TG is

about 695.9x, 419.4x, and 111.3x faster than SER_TG,

respectively at fault coverages of 80%, 90%, and 95%.

Besides, APXD_TG is 18.4, 11.5x, 3.6x faster than

PAR_TG, at the above mentioned fault coverages.

Fig. 10. Speedup in various test generation methods over

SER_TG

Fig. 11. Speedup in various test generation methods over

PAR_TG

Table II. Normalized test generation time in fault coverage of 80%

Method

C
4

3
2

C
4

9
9

C
8

8
0

C
1

3
5
5

C
1

9
0
8

C
3

5
4
0

C
5

3
1
5

C
6

2
8
8

C
7

5
5
2

A
v

g
.

APXD_TG 3.0 1.0 3.7 3.2 8.1 33.5 25.7 8.0 42.7 14.3

PRB_TG [30] 3.3 1.0 3.5 2.5 6.4 39.8 27.5 8.9 41.6 14.9

SMP_TG_3% 11.5 4.7 23.6 27.2 74.5 491.0 691.0 334.0 1453.8 345.7

SMP_TG_5% 13.9 7.7 31.7 38.2 116.9 711.6 1412.6 436.8 2117.5 543.0

SMP_TG_10% 25.1 12.0 52.7 68.6 191.4 1433.9 2064.2 976.9 4001.5 980.7

PAR_TG 7.1 3.1 13.9 20.7 58.5 367.5 509.0 295.7 1088.0 262.6

SER_TG 190.7 109.8 453.3 691.8 1816.6 11835.3 18373.0 9900.6 46267.3 9959.8

Table III. Normalized test generation time in fault coverage of 90%

Method

C
4

3
2

C
4

9
9

C
8

8
0

C
1

3
5
5

C
1

9
0
8

C
3

5
4
0

C
5

3
1
5

C
6

2
8
8

C
7

5
5
2

A
v

g
.

APXD_TG 4.3 3.4 6.4 11.7 20.1 62.2 46.0 11.6 136.6 33.6

PRB_TG [30] 5.4 4.0 5.7 9.1 19.5 68.4 46.0 13.9 132.1 33.8

SMP_TG_3% 15.1 10.5 33.3 55.6 144.7 729.7 872.3 369.7 2728.0 551.0

SMP_TG_5% 18.4 14.1 43.5 75.5 204.4 1028.3 1773.1 499.7 4016.4 852.6

SMP_TG_10% 30.7 22.0 66.6 135.2 323.6 2321.7 2781.5 1069.9 7068.2 1535.5

PAR_TG 9.6 7.4 18.5 41.8 95.9 517.5 643.5 336.8 1801.7 385.9

SER_TG 217.5 169.9 537.5 1188.4 2748.5 15787.1 22745.0 11076.2 72377.4 14094.2

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

355

Table IV. Normalized test generation time in fault coverage of 95%

Method
C

4
3

2

C
4

9
9

C
8

8
0

C
1

3
5
5

C
1

9
0
8

C
3

5
4
0

C
5

3
1
5

C
6

2
8
8

C
7

5
5
2

A
v

g
.

APXD_TG 5.9 7.8 8.8 22.1 33.8 112.6 69.1 14.9 1124.9 155.5

PRB_TG [30] 5.8 7.6 8.5 19.0 125.6 1029.1 72.0 19.8 862.2 238.9

SMP_TG_3% 18.4 17.9 40.1 79.2 184.7 - 1067.2 399.9 - 200.8

SMP_TG_5% 21.8 19.8 53.4 106.4 258.0 1535.1 1978.4 544.8 10205.3 1635.9

SMP_TG_10% 34.6 30.6 78.5 179.9 407.8 2970.9 3213.8 1124.8 16169.6 2690.1

PAR_TG 11.8 13.4 22.6 60.0 122.7 644.6 730.7 358.5 3043.0 556.4

SER_TG 178.8 224.6 571.5 1499.1 3248.1 18540.0 25106.5 11683.6 94806.1 17317.6

Table V, VI, and VII show the number of test vectors

produced by different test generation methods in faults

coverage of 80%, 90%, and 95%, respectively. Column

TPR (Test Pattern Ratio) in these tables has been

calculated according to Equation (8). In this equation,

nTVapx is the number of test vectors in a final test set

produced by a test generation method that exploits an

approximate indicator for test vector evaluation, i.e.

APXD_TG, PRB_TG, and SMP_TG methods. nTVFC is

the number of test vectors in a test set produced by a test

generation method that uses fault coverage to prune test

vectors, i.e. SER_TG, or PAR_TG.

(8)
apx

FC

nTV
TPR

nTV

The results of Table V, VI, and VII make it possible to

compare the accuracy and efficiency of test generation

based on approximate indicators. The results show that

APXD_TG method is significantly more efficient than

other approximate methods, namely PRB_TG and

SMP_TG. APXD_TG, with only 2%, 1%, and 2%

increase in the number of test patterns (in three fault

coverage of 80%, 90%, and 95%, respectively), is able to

achieve a fault coverage equal to the coverage of

PAR_TG and SER_TG methods.

6. Discussion and Conclusion

Simulation-based ATPG methods are interested

because of their lower execution time. In these methods,

fault coverage indicator is traditionally used to evaluate

test patterns and eliminate patterns with lower efficiency.

Although test patterns can accurately be evaluated by

their fault coverage index, but calculation of fault

coverage requires fault simulation, which is very time-

consuming. Instead of fault coverage, approximate

indicators can be used to evaluate test patterns.

Calculation of approximate indicators is much faster than

fault coverage.

In this paper, we propose an approximate indicator

called APXD as a suitable alternative to fault coverage

indicator. In APXD simulation, all faults are considered

simultaneously. This means that by only one round of

simulation for each test pattern, the number of faults that

can be detected by that test pattern is calculated

approximately. In APXD simulation, in addition to

propagating logical values from inputs to output of gates,

having the number of faults propagated to inputs of a gate,

the number of faults whose effect propagate to the output

of that gate is also calculated.

Table V. Test set size in fault coverage of 80%
M

et
h

o
d

A
P

X
D

_
T

G

P
R

B
_

T
G

 [
3

0
]

S
M

P
_

T
G

_
3

%

S
M

P
_

T
G

_
5

%

S
M

P
_

T
G

_
1

0
%

P
A

R
_

T
G

S
E

R
_

T
G

C432 13 15 18 16 17 13 13

C499 4 5 5 6 5 4 4

C880 9 11 14 13 11 9 9

C1355 7 7 8 8 7 7 7

C1908 13 14 16 18 15 13 13

C3540 27 30 36 34 30 25 25

C5315 14 19 19 18 16 14 14

C6288 4 6 5 4 5 4 4

C7552 16 20 21 20 18 16 16

TPR 1.02 1.21 1.35 1.3 1.18 1 1

Table VI. Test set size in fault coverage of 90%

M
et

h
o

d

A
P

X
D

_
T

G

P
R

B
_

T
G

 [
3

0
]

S
M

P
_

T
G

_
3

%

S
M

P
_

T
G

_
5

%

S
M

P
_

T
G

_
1

0
%

P
A

R
_

T
G

S
E

R
_

T
G

C432 19 25 28 27 26 19 19

C499 14 18 19 18 17 14 14

C880 16 18 27 25 19 15 15

C1355 26 26 31 31 29 26 26

C1908 33 41 50 50 41 33 33

C3540 59 62 80 74 71 60 60

C5315 26 33 33 32 32 25 25

C6288 6 8 7 6 7 6 6

C7552 53 56 73 72 58 51 51

TPR 1.01 1.15 1.4 1.35 1.2 1 1

Table VII. Test set size in fault coverage of 95%

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

356

M
et

h
o

d

A
P

X
D

_
T

G

P
R

B
_

T
G

 [
3

0
]

S
M

P
_

T
G

_
3

%

S
M

P
_

T
G

_
5

%

S
M

P
_

T
G

_
1

0
%

P
A

R
_

T
G

S
E

R
_

T
G

C432 26 37 40 38 36 26 26

C499 30 36 40 32 32 30 30

C880 22 27 39 40 30 22 22

C1355 49 54 58 60 54 49 49

C1908 56 69 82 83 71 56 56

C3540 105 106 - 152 129 101 101

C5315 40 53 61 53 54 38 38

C6288 8 15 10 9 9 8 8

C7552 154 167 - 183 171 151 151

TPR 1.02 1.17 1.44 1.35 1.22 1 1

Our experimental results demonstrate that APXD

approximation is strongly correlated with fault coverage

indicator. Compared to other approximate methods such

as probabilistic and statistical methods, APXD indicator

has a higher correlation coefficient with fault coverage.

In terms of execution time, our experiments show that

APXD indicator can be calculated about 1900x and 56x

faster than fault coverage, using serial, and parallel fault

simulation, respectively. Additionally, APXD simulation

is about 63x faster than sampling fault simulation with a

sampling rate of 3%. The short execution time and

accuracy of APXD indicator confirms that this indicator

is a good candidate to replace fault coverage indicator in

simulation-based ATPG methods. Our experimental

results show that in a pruning-based test generation

method, the use of APXD indicator instead of fault

coverage, in fault coverage of 80%, can lead to a speedup

of about 700x, 24.2x, and 18.4x compared with serial,

sampling, and parallel methods, respectively. Speedup

values obtained in the 95% fault coverage are 111.3x,

11.1x, and 3.6x. Besides, using APXD indicator, instead

of fault coverage, for test pattern pruning, leads to at most

2% increase in the final test set size.

It is worth mentioning the proposed test generation

method, APXD_TG, is not adapted and evaluated for test

generation of sequential circuits. Although the method

can be adapted for sequential circuits, but this is not a big

issue. Practically, sequential circuits are turned into

combinational circuits with design for test techniques,

and existing combinational test generation methods are

applied to them.

Additionally, we have exploited the proposed

approximate indicator, called APXD, in a pruning based

test generation method to show its effectiveness. In this

approach test patterns are generated in a pure random

fashion and then evaluated and pruned according to their

APXD value. Using metaheuristic approaches to generate

more efficient pseudo random test patterns can improve

the quality of the final test set as well as test generation

time, which we will consider as our future work.

7. References

[1] E. O. Osimiry, R. Ubar, S. Kostin, and J. Raik, "A

novel random approach to diagnostic test generation," in

2016 IEEE Nordic Circuits and Systems Conference

(NORCAS), 2016, pp. 1-4.

[2] A. Kamran, M. S. Jahangiry, and Z. Navabi, "Merit

based directed random test generation (MDRTG) scheme

for combinational circuits," in 2010 East-West Design &

Test Symposium (EWDTS), 2010, pp. 416-419.

[3] A. Kamran, "HASTI: hardware-assisted functional

testing of embedded processors in idle times," IET

Computers & Digital Techniques, vol. 13, no. 3, pp. 198-

205, 2019.

 [4] S. Esfandyari, V. Rafe, “A Hybrid solution for

Software testing to minimum test suite generation using

hill climbing and bat search algorithms”, Tabriz Journal

of Electrical Engineering, vol. 46, no. 3, pp. 25-35, 2016

(in persion).

[5] M. M. Dejam Shahabi, S. E. Beheshtian, P. Badiei, R.

Akbari, S. M. R. Moosavi, “Adapting Swarm Intelligence

Based Methods for Test Data Generation”, Tabriz

Journal of Electrical Engineering, vol. 51, no. 2, pp. 183-

193, 2021.

 [6] E. M. Rudnick, J. G. Holm, D. G. Saab, and J. H.

Patel, "Application of simple genetic algorithms to

sequential circuit test generation," in Proceedings of

European Design and Test Conference EDAC-ETC-

EUROASIC, 1994, pp. 40-45.

[7] E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T.

M. Niermann, "A genetic algorithm framework for test

generation," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 16, no. 9,

pp. 1034-1044, 1997.

[8] H. Harmanani and B. Karablieh, "A hybrid distributed

test generation method using deterministic and genetic

algorithms," in Fifth International Workshop on System-

on-Chip for Real-Time Applications (IWSOC'05), 2005,

pp. 317-322.

[9] M. Azimipour, M. R. Bonyadi, and M. Eshghi,

"Using immune genetic algorithm in ATPG," Australian

Journal of Basic and Applied Sciences, vol. 2, no. 4, pp.

920-928, 2008.

[10] A. N. Nagamani, S. N. Anuktha, N. Nanditha, and

V. K. Agrawal, "A Genetic Algorithm-Based Heuristic

Method for Test Set Generation in Reversible Circuits,"

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 37, no. 2, pp. 324-

336, 2018.

[11] A. Bhar, S. Chattopadhyay, I. Sengupta, and R.

Kapur, "GA based diagnostic test pattern generation for

transition faults," in 2015 19th International Symposium

on VLSI Design and Test, 2015, pp. 1-6.

[12] J. P. Anita and P. T. Vanathi, "Genetic algorithm

based test pattern generation for multiple stuck-at faults

and test power reduction in VLSI circuits," in 2014

International Conference on Electronics and

Communication Systems (ICECS), 2014, pp. 1-6.

[13] R. Farah and H. Harmanani, "An Ant Colony

Optimization approach for test pattern generation," 2008

Canadian Conference on Electrical and Computer

Engineering, pp. 001397-001402, 2008.

[14] M. M. Alateeq and W. Pedrycz, "Analysis of

optimization algorithms in automated test pattern

generation for sequential circuits," in 2017 IEEE

International Conference on Systems, Man, and

Cybernetics (SMC), 2017, pp. 1834-1839.

[15] G. Yuan-Liang and X. Wen-Bo, "Study on

Automatic Test Generation of Digital Circuits Using

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 3, Autumn 2021 Serial no. 97

357

Particle Swarm Optimization," in 2011 10th International

Symposium on Distributed Computing and Applications

to Business, Engineering and Science, 2011, pp. 324-328.

[16] Z. Jiali, Z. Lin, Y. Yun, N. Tianlin, Z. Long, and X.

Xiaodong, "The Test Pattern Generation for Digital

Integrated Circuits Based on CA-IA-PSO Algorithm," in

2015 Seventh International Conference on Measuring

Technology and Mechatronics Automation, 2015, pp.

1316-1320.

[17] M. Santos, H. Braga, I. Teixeira, J. P. Teixeira,

"Dynamic Fault Injection Optimization for FPGA-Based

Harware Fault Simulation, " Design and Diagnostics of

Electronic Circuits and Systems Workshop (DDECS),

2002, pp. 370-373.

[18] A. Parreira, J. P. Teixeira, A. Pantelimon, M. B.

Santos, and J. T. de Sousa, "Fault Simulation Using

Partially Reconfigurable Hardware," vol. 2778, pp. 839-

848, 2003.

[19] L. Kafka and O. Novak, "FPGA-based fault

simulator," in 2006 IEEE Design and Diagnostics of

Electronic Circuits and systems, 2006, pp. 272-276.

[20] M. Haghbayan, S. Teräväinen, A. Rahmani, P.

Liljeberg, and H. Tenhunen, "Adaptive fault simulation

on many-core microprocessor systems," in 2015 IEEE

International Symposium on Defect and Fault Tolerance

in VLSI and Nanotechnology Systems (DFTS), 2015, pp.

151-154.

[21] S. Hadjitheophanous, S. N. Neophytou, and M. K.

Michael, "Scalable parallel fault simulation for shared-

memory multiprocessor systems," in 2016 IEEE 34th

VLSI Test Symposium (VTS), 2016, pp. 1-6.

[22] M. Li and M. S. Hsiao, "3-D Parallel Fault

Simulation With GPGPU," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 30, no. 10, pp. 1545-1555, 2011.

[23] M. Beckler and R. D. Blanton, "Fault simulation

acceleration for TRAX dictionary construction using

GPUs," in 2017 IEEE International Test Conference

(ITC), 2017, pp. 1-9.

[24] E. Schneider and H. Wunderlich, "SWIFT: Switch-

Level Fault Simulation on GPUs," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 38, no. 1, pp. 122-135, 2019.

[25] J. T. Xiao, T. S. Hsu, C. M. Fuchs, Y. T. Chang, J.

J. Liou, and H. H. Chen, "An ISA-level Accurate Fault

Simulator for System-level Fault Analysis," in 2020

IEEE 29th Asian Test Symposium (ATS, pp. 1-6), 2020.

[26] M. Karami, M. H. Haghbayan, M. Ebrahimi, A.

Miele, H. Tenhunen, and J. Plosila, "Hierarchical Fault

Simulation of Deep Neural Networks on Multi-Core

Systems," in 2021 IEEE European Test Symposium

(ETS), pp. 1-2, 2021.

[27] P. R. Maier, U. Sharif, D. Mueller-Gritschneder, and

U. Schlichtmann, "Efficient Fault Injection for

Embedded Systems: As Fast as Possible but as Accurate

as Necessary," in 2018 IEEE 24th International

Symposium on On-Line Testing And Robust System

Design (IOLTS, pp. 119-122), 2018.

[28] F. M. Goncalves, M. B. Santos, I. C. Teixeira, and J.

P. Teixeira, "Self-checking and fault tolerance quality

assessment using fault sampling," in 17th IEEE

International Symposium on Defect and Fault Tolerance

in VLSI Systems, 2002. DFT 2002. Proceedings., 2002,

pp. 216-224.

[29] S. Mirkhani, J. A. Abraham, T. Vo, H. Jun, and B.

Eklow, "FALCON: Rapid statistical fault coverage

estimation for complex designs," in 2012 IEEE

International Test Conference, 2012, pp. 1-10.

[30] M. Fooladi and A. Kamran, "Speed-Up in Test

Methods Using Probabilistic Merit Indicators," Journal

of Electronic Testing, vol. 36, no. 2, pp. 285-296,

2020/04/01 2020.

[31] S. A. Al-Arian and M. A. Al-Kharji, "Fault

simulation and test generation by fault sampling

techniques," in Proceedings 1992 IEEE International

Conference on Computer Design: VLSI in Computers &

Processors, 1992, pp. 365-368.

[32] G. Asadi and M. B. Tahoori, "An analytical

approach for soft error rate estimation in digital circuits,"

in 2005 IEEE International Symposium on Circuits and

Systems, 2005, pp. 2991-2994 Vol. 3.

[33] M. M. Mukaka, "Statistics corner: A guide to

appropriate use of correlation coefficient in medical

research," Malawi medical journal : the journal of

Medical Association of Malawi, vol. 24, no. 3, pp. 69-71,

2012.

8. Appendix

Table VIII demonstrates a list of symbols and notations

used in this paper.

Table VIII. List of Symbols and notations

Symbol Remarks

ATPG Automatic Test Pattern Generation

GA Genetic Algorithm

FS Fault Simulation

APXD Approximate number of detected faults

TP Test Pattern

FC Fault Coverage

SMP_FC sampling fault coverage

PMI Probabilistic Merit Indicator

L A line in a circuit netlist

VL Logical value of line L

APXDL APXD of line L

PI Primary Input

PO Primary Output

APXD_TG Test generation based on APXD indicator

PRB_TG Test generation based on PMI

SMP_TG Test generation based on sampling

SER_TG
Test generation based on serial fault

simulation

PAR_TG
Test generation based on parallel fault

simulation

