تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,538,382 |
تعداد دریافت فایل اصل مقاله | 15,242,127 |
مدلسازی ریاضی غشا سلولی کروی تحت تنش هیدرواستاتیک و میدان گرما | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 38، دوره 52، شماره 2 - شماره پیاپی 99، مرداد 1401، صفحه 353-360 اصل مقاله (356.49 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.47933.2978 | ||
نویسندگان | ||
امین هادی1؛ سید محمد حسینی* 2 | ||
1استادیار، مرکز تحقیقات سلولی مولکولی، دانشگاه علوم پزشکی یاسوج، یاسوج، ایران. | ||
2استادیار، گروه مهندسی مکانیک، دانشگاه هرمزگان، بندرعباس، ایران. | ||
چکیده | ||
در این مقاله اثرات اندازه به وسیله نظریه گرادیان کرنش بر غشا سلولی کروی تحت فشار هیدرواستاتیک و میدان گرما بررسی میشود. دو پارامتر مهم و مؤثر بر کنام سلولی، نیروهای مکانیکی و میدانهای گرما هستند. میدانهای گرما و مکانیکی وارد بر سلول در صنایع غذایی برای غیرفعال کردن میکروارگانیسمها استفاده میشوند. معادلات حاکم با استفاده از اصل کمینه انرژی پتانسیل به دست میآیند و در نهایت معادلات حاکم به روش عددی حل میشوند. تأثیر پارامترهای اندازه، میدان گرما و فشار هیدرواستاتیک مورد بررسی قرار میگیرند. نتایج به دست آمده نشان میدهند که اثرات اندازه، قابل صرفنظر کردن نیستند و خواص سختترشوندگی نسبت به نظریه کلاسیک پیشبینی میشود. در ضمن میدان گرما و فشار هیدرواستاتیک باعث افزایش جابجاییها میشود. نتایج این تحقیق میتواند برای صنایع غذایی و مهندسی بافت استفاده گردد. | ||
کلیدواژهها | ||
مدلسازی سلول کروی؛ غشا سلولی؛ گرادیان کرنش؛ فشار هیدرواستاتیک؛ میدان گرما | ||
مراجع | ||
[1] Lee, J. Y., Chang, J. K., Dominguez, A. A., Lee, H.-p., Nam, S., Chang, J., Varma, S., Qi, L. S., West, R. B. and Chaudhuri, O. YAP-independent mechanotransduction drives breast cancer progression. Nature communications, Vol. 10, No. 1, pp. 1-9, 2019.
[2] Jin, P., Jan, L. Y. and Jan, Y.-N. Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms. Annual review of neuroscience, Vol. 43, pp., 2020.
[3] Leucht, P., Kim, J.-B., Currey, J. A., Brunski, J. and Helms, J. A. FAK-mediated mechanotransduction in skeletal regeneration. PLoS One, Vol. 2, No. 4, pp. e390, 2007.
[4] Wong, V. W., Akaishi, S., Longaker, M. T. and Gurtner, G. C. Pushing back: wound mechanotransduction in repair and regeneration. Journal of Investigative Dermatology, Vol. 131, No. 11, pp. 2186-2196, 2011.
[5] Poss, K. D., Wilson, L. G. and Keating, M. T. Heart regeneration in zebrafish. Science, Vol. 298, No. 5601, pp. 2188-2190, 2002.
[6] Dunn, S. L. and Olmedo, M. L. Mechanotransduction: relevance to physical therapist practice-understanding our ability to affect genetic expression through mechanical forces. Physical therapy, Vol. 96, No. 5, pp. 712, 2016.
[7] Nowell, C. S., Odermatt, P. D., Azzolin, L., Hohnel, S., Wagner, E. F., Fantner, G. E., Lutolf, M. P., Barrandon, Y., Piccolo, S. and Radtke, F. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nature cell biology, Vol. 18, No. 2, pp. 168-180, 2016.
[8] Hadi, A., Rastgoo, A., Haghighipour, N. and Bolhassani, A. Numerical modelling of a spheroid living cell membrane under hydrostatic pressure. Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018.
[9] Suswillo, R. F., Javaheri, B., Rawlinson, S. C., Dowthwaite, G. P., Lanyon, L. E. and Pitsillides, A. A. Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes. Cell biochemistry and function, Vol. 35, No. 1, pp. 56-65, 2017.
[10] Mascharak, S., Benitez, P. L., Proctor, A. C., Madl, C. M., Hu, K. H., Dewi, R. E., Butte, M. J. and Heilshorn, S. C. YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography. Biomaterials, Vol. 115, pp. 155-166, 2017.
[11] Donahue, D. A., Porrot, F., Couespel, N. and Schwartz, O. SUN2 silencing impairs CD4 T cell proliferation and alters sensitivity to HIV-1 infection independently of Cyclophilin A. Journal of Virology, Vol., pp. JVI. 02303-02316, 2017.
[12] Paul, N. E., Denecke, B., Kim, B. S., Dreser, A., Bernhagen, J. and Pallua, N. The effect of mechanical stress on the proliferation, adipogenic differentiation and gene expression of human adipose‐derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, Vol., pp., 2017.
[13] Tabatabaei, F., Jazayeri, M., Ghahari, P. and Haghighipour, N. Effects of equiaxial strain on the differentiation of dental pulp stem cells without using biochemical reagents. Mol Cell Biomech, Vol. 11, No. 3, pp. 209-220, 2014.
[14] Haghighipour, N., Heidarian, S., Shokrgozar, M. A. and Amirizadeh, N. Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell. Cell biology international, Vol. 36, No. 7, pp. 669-675, 2012.
[15] Norizadeh-Abbariki, T., Mashinchian, O., Shokrgozar, M. A., Haghighipour, N., Sen, T. and Mahmoudi, M. Superparamagnetic nanoparticles direct differentiation of embryonic stem cells into skeletal muscle cells. Journal of Biomaterials and Tissue Engineering, Vol. 4, No. 7, pp. 579-585, 2014.
[16] Pan, H., Xie, Y., Zhang, Z., Li, K., Hu, D., Zheng, X., Fan, Q. and Tang, T. YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure. Colloids and Surfaces B: Biointerfaces, Vol. 152, pp. 344-353, 2017.
[17] Deshpande, R. S. and Spector, A. A. Modeling stem cell myogenic differentiation. Scientific Reports, Vol. 7, pp., 2017.
[18] Safshekan, F., Shadpour, M. T., Shokrgozar, M. A., Haghighipour, N. and Alavi, S. H. Effects of short-term cyclic hydrostatic pressure on initiating and enhancing the expression of chondrogenic genes in human adipose-derived mesenchymal stem cells. Journal of Mechanics in Medicine and Biology, Vol. 14, No. 04, pp. 1450054, 2014.
[19] Szeto, G. L., Van Egeren, D., Worku, H., Sharei, A., Alejandro, B., Park, C., Frew, K., Brefo, M., Mao, S. and Heimann, M. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Scientific reports, Vol. 5, pp. 10276, 2015.
[20] Sharei, A., Zoldan, J., Adamo, A., Sim, W. Y., Cho, N., Jackson, E., Mao, S., Schneider, S., Han, M.-J. and Lytton-Jean, A. A vector-free microfluidic platform for intracellular delivery. Proceedings of the National Academy of Sciences, Vol. 110, No. 6, pp. 2082-2087, 2013.
[21] Lee, J., Sharei, A., Sim, W. Y., Adamo, A., Langer, R., Jensen, K. F. and Bawendi, M. G. Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel, high-throughput microfluidic device. Nano letters, Vol. 12, No. 12, pp. 6322-6327, 2012.
[22] Sharei, A., Cho, N., Mao, S., Jackson, E., Poceviciute, R., Adamo, A., Zoldan, J., Langer, R. and Jensen, K. F. Cell squeezing as a robust, microfluidic intracellular delivery platform. JoVE (Journal of Visualized Experiments), Vol., No. 81, pp. e50980-e50980, 2013.
[23] Uchugonova, A., Breunig, H. G., Batista, A. and König, K. Optical reprogramming of human cells in an ultrashort femtosecond laser microfluidic transfection platform. Journal of biophotonics, Vol., pp., 2015.
[24] Buhlmann, C., Valer, M. and Mueller, O. Monitoring siRNA transfection efficiency and gene silencing effect with a microfluidic chip device. Tissue Antigens, Vol. 64, No. 4, pp. 432, 2004.
[25] Perrier-Cornet, J.-M., Maréchal, P.-A. and Gervais, P. A new design intended to relate high pressure treatment to yeast cell mass transfer. Journal of biotechnology, Vol. 41, No. 1, pp. 49-58, 1995.
[26] Smith, A., Moxham, K. and Middelberg, A. Wall material properties of yeast cells. Part II. Analysis. Chemical Engineering Science, Vol. 55, No. 11, pp. 2043-2053, 2000.
[27] Hartmann, C., Mathmann, K. and Delgado, A. Mechanical stresses in cellular structures under high hydrostatic pressure. Innovative Food Science & Emerging Technologies, Vol. 7, No. 1, pp. 1-12, 2006.
[28] Hartmann, C. and Delgado, A. Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. Journal of biomechanics, Vol. 37, No. 7, pp. 977-987, 2004.
[29] Miyanishi, K., Trindade, M. C., Lindsey, D. P., Beaupré, G. S., Carter, D. R., Goodman, S. B., Schurman, D. J. and Smith, R. L. Effects of hydrostatic pressure and transforming growth factor-β 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Engineering, Vol. 12, No. 6, pp. 1419-1428, 2006.
[30] Price, J. C. F. A. The development and validation of a hydrostatic pressure bioreactor for applications in bone tissue engineering. Keele University, 2017.
[31] Chen, J., Yuan, Z., Liu, Y., Zheng, R., Dai, Y., Tao, R., Xia, H., Liu, H., Zhang, Z. and Zhang, W. Improvement of In Vitro Three-Dimensional Cartilage Regeneration by a Novel Hydrostatic Pressure Bioreactor. Stem cells translational medicine, Vol., pp. sctm. 2016-0118, 2016.
[32] Schroeder, C., Hoelzer, A., Zhu, G., Woiczinski, M., Betz, O. B., Graf, H., Mayer-Wagner, S. and Mueller, P. E. A CLOSED LOOP PERFUSION BIOREACTOR FOR DYNAMIC HYDROSTATIC PRESSURE LOADING AND CARTILAGE TISSUE ENGINEERING. Journal of Mechanics in Medicine and Biology, Vol. 16, No. 03, pp. 1650025, 2016.
[33] Seitz, C., Rückert, M., Deloch, L., Weiss, E.-M., Utz, S., Izydor, M., Ebel, N., Schlücker, E., Fietkau, R. and Gaipl, U. S. Tumor cell-based vaccine generated with high hydrostatic pressure synergizes with radiotherapy by generating a favorable anti-tumor immune microenvironment. Frontiers in oncology, Vol. 9, pp. 805, 2019.
[34] Tokuda, S. and Yu, A. S. Regulation of epithelial cell functions by the osmolality and hydrostatic pressure gradients: a possible role of the tight junction as a sensor. International journal of molecular sciences, Vol. 20, No. 14, pp. 3513, 2019.
[35] Salehi-Nik, N., Amoabediny, G., Pouran, B., Tabesh, H., Shokrgozar, M. A., Haghighipour, N., Khatibi, N., Anisi, F., Mottaghy, K. and Zandieh-Doulabi, B. Engineering parameters in bioreactor’s design: a critical aspect in tissue engineering. BioMed research international, Vol. 2013, pp., 2013.
[36] Haghighipour, N., Tafazzoli‐Shadpour, M., Shokrgozar, M. A. and Amini, S. Effects of cyclic stretch waveform on endothelial cell morphology using fractal analysis. Artificial organs, Vol. 34, No. 6, pp. 481-490, 2010.
[37] Riehl, B. D., Park, J.-H., Kwon, I. K. and Lim, J. Y. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Engineering Part B: Reviews, Vol. 18, No. 4, pp. 288-300, 2012.
[38] Syedain, Z. H. and Tranquillo, R. T. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials, Vol. 30, No. 25, pp. 4078-4084, 2009.
[39] Wang, W.-B., Li, H.-P., Yan, J., Zhuang, F., Bao, M., Liu, J.-T., Qi, Y.-X. and Han, Y. CTGF regulates cyclic stretch-induced vascular smooth muscle cell proliferation via microRNA-19b-3p. Experimental cell research, Vol. 376, No. 1, pp. 77-85, 2019.
[40] Zhao, F., Chella, R. and Ma, T. Effects of shear stress on 3‐D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnology and bioengineering, Vol. 96, No. 3, pp. 584-595, 2007.
[41] Yeatts, A. B. and Fisher, J. P. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone, Vol. 48, No. 2, pp. 171-181, 2011.
[42] McCoy, R. J. and O'Brien, F. J. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Engineering Part B: Reviews, Vol. 16, No. 6, pp. 587-601, 2010.
[43] Anisi, F., Salehi-Nik, N., Amoabediny, G., Pouran, B., Haghighipour, N. and Zandieh-Doulabi, B. Applying shear stress to endothelial cells in a new perfusion chamber: hydrodynamic analysis. Journal of Artificial Organs, Vol. 17, No. 4, pp. 329-336, 2014.
[44] Hodge, W., Fijan, R., Carlson, K., Burgess, R., Harris, W. and Mann, R. Contact pressures in the human hip joint measured in vivo. Proceedings of the National Academy of Sciences, Vol. 83, No. 9, pp. 2879-2883, 1986.
[45] Bauer, B., Hartmann, M., Sommer, K. and Knorr, D. Optical in situ analysis of starch granules under high pressure with a high pressure cell. Innovative Food Science & Emerging Technologies, Vol. 5, No. 3, pp. 293-298, 2004.
[46] Ludwig, H., Butz, P. and Weber-Kühn, H. Bakterien unter Druck. Deutsche Apotheker Zeitung, Vol. 130, pp. 2774-2776, 1990.
[47] Adeli, M. M., Hadi, A., Hosseini, M. and Gorgani, H. H. Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory. The European Physical Journal Plus, Vol. 132, No. 9, pp. 393, 2017.
[48] Hosseini, M., Gorgani, H. H., Shishesaz, M. and Hadi, A. Size-Dependent Stress Analysis of Single-Wall Carbon Nanotube Based on Strain Gradient Theory. International Journal of Applied Mechanics, Vol. 09, No. 06, pp. 1750087, 2017.
[49] Hosseini, M., Shishesaz, M., Tahan, K. N. and Hadi, A. Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016.
[50] Nejad, M. Z., Hadi, A. and Rastgoo, A. Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory. International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.
[51] Shishesaz, M., Hosseini, M., Tahan, K. N. and Hadi, A. Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory. Acta Mechanica, Vol., pp. 1-28, 2017.
[52] Nejad, M. Z. and Hadi, A. Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016.
[53] Nejad, M. Z. and Hadi, A. Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science, Vol. 106, pp. 1-9, 2016.
[54] Toupin, R. A. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 385-414, 1962.
[55] Mindlin, R. and Eshel, N. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, Vol. 4, No. 1, pp. 109-124, 1968.
[56] Eringen, A. C. Theory of micromorphic materials with memory. International Journal of Engineering Science, Vol. 10, No. 7, pp. 623-641, 1972.
[57] Eringen, A. C. Nonlocal polar elastic continua. International journal of engineering science, Vol. 10, No. 1, pp. 1-16, 1972.
[58] Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983.
[59] Eringen, A. C. Nonlocal continuum field theories. Springer Science & Business Media, 2002.
[60] Aifantis, E. Strain gradient interpretation of size effects. International Journal of Fracture, Vol. 95, No. 1-4, pp. 299-314, 1999.
[61] Yang, F., Chong, A., Lam, D. C. C. and Tong, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, Vol. 39, No. 10, pp. 2731-2743, 2002.
[62] Lam, D. C., Yang, F., Chong, A., Wang, J. and Tong, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, pp. 1477-1508, 2003.
[63] Danesh, V. and Asghari, M. Analysis of micro-rotating disks based on the strain gradient elasticity. Acta Mechanica, Vol. 225, No. 7, pp. 1955-1965, 2014.
[64] Akgöz, B. and Civalek, Ö. Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Current Applied Physics, Vol. 11, No. 5, pp. 1133-1138, 2011.
[65] Civalek, Ö., Demir, Ç. and Akgöz, B. Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Mathematical and Computational Applications, Vol. 15, No. 2, pp. 289-298, 2010.
[66] Farajpour, A. and Rastgoo, A. Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory. Results in physics, Vol. 7, pp. 1367-1375, 2017.
[67] Mokhtari, F. and TADI, B. Y. Free Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory, Vol., pp., 2016.
[68] Zeverdejani, M. K. and Beni, Y. T. The nano scale vibration of protein microtubules based on modified strain gradient theory. Current Applied Physics, Vol. 13, No. 8, pp. 1566-1576, 2013.
[69] Bavi, O., Cox, C. D., Vossoughi, M., Naghdabadi, R., Jamali, Y. and Martinac, B. Influence of global and local membrane curvature on mechanosensitive ion channels: a finite element approach. Membranes, Vol. 6, No. 1, pp. 14, 2016.
[70] Martinac, B., Nikolaev, Y. A., Silvani, G., Bavi, N., Romanov, V., Nakayama, Y., Martinac, A. D., Rohde, P., Bavi, O. and Cox, C. D. Cell membrane mechanics and mechanosensory transduction. Elsevier, City, 2020.
| ||
آمار تعداد مشاهده مقاله: 275 تعداد دریافت فایل اصل مقاله: 130 |