- [1] J. D. Anderson and J. Wendt, Computational fluid dynamics, Springer, 1995.
- [2] E. F. Anley and Z. Zheng, Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients, Symmetry, 12 (2020), 485.
- [3] A. R. Appadu, J. K. Djoko, and H. Gidey, A computational study of three numerical methods for some advection- diffusion problems, Applied Mathematics and Computation, 272 (2016), 629–647.
- [4] E. F. Anley, Numerical solutions of elliptic partial differential equations by using finite volume method, Pure and Applied Mathematics Journal, 5 (2015), 120–129.
- [5] S. Arun and A. Satheesh, Analysis of flow behaviour in a two sided lid driven cavity using lattice boltzmann technique, Alexandria Engineering Journal, 54 (2015), 795–806.
- [6] V. Aswin, A. Awasthi, and C. Anu, A comparative study of numerical schemes for convection-diffusion equation, Procedia Engineering, 127 (2015), 621–627.
- [7] P. Ding, Solution of lid-driven cavity problems with an improved SIMPLE algorithm at high Reynolds numbers, International Journal of Heat and Mass Transfer, 115 (2017), 942–954.
- [8] I. Demirdˇzi´c, Lilek Zˇ, and M. Peri´c, Fluid flow and heat transfer test problems for non-orthogonal grids: bench-mark solutions, International Journal for Numerical Methods in Fluids, 15 (1992), 329–354.
- [9] E. Erturk, Discussions on driven cavity flow, International journal for numerical methods in fluids, 60 (2009), 275–294.
- [10] E. Erturk, T. C, Corke, and C. G¨ok¸c¨ol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, International journal for Numerical Methods in fluids, 48 (2005), 747–774.
- [11] E. Erturk and C. G¨ok¸c¨ol, Fourth-order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds numbers, International Journal for Numerical Methods in Fluids, 50 (2006), 421–436.
- [12] E. Erturk and O. Gokcol, Fine grid numerical solutions of triangular cavity flow, The European Physical Journal- Applied Physics, 38 (2007), 97–105.
- [13] J. Ferziger and M. Peric, Computational methods for fluid dynamics: Springer Science & Business Media, 2012.
- [14] U. Ghia, K. N. Ghia, and C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of computational physics, 48 (1982), 387–411.
- [15] D. Gismalla, Matlab software for iterative methods and algorithms to solve a linear system, International Journal of Engineering and Technical Research (IJETR), (2014), 2321–0869.
- [16] M. M. Gupta and J. C. Kalita A new paradigm for solving Navier–Stokes equations: streamfunction–velocity formulation, Journal of Computational Physics, 207 (2005), 52–68.
- [17] S. Hou, Q. Zou, S. Chen, G. Doolen, and A. C. Cogley, Simulation of cavity flow by the lattice Boltzmann method, Journal of computational physics, 118 (1995), 329–347.
- [18] J. V. Indukuri and R. Maniyeri, Numerical simulation of oscillating lid driven square cavity, Alexandria engineer- ing journal, 57 (2018), 2609–2625.
- [19] P. K. Kundu and I. M. Cohen, Fluid mechanics, 2002.
- [20] A. G. Kamel, E. H. Haraz, and S. N. Hanna, Numerical simulation of three-sided lid-driven square cavity, Engi- neering Reports, 2 (2020), e12151.
- [21] S. Mazumder, Numerical methods for partial differential equations: finite difference and finite volume methods, Academic Press,(2015).
- [22] F. Moukalled, L. Mangani, and M. Darwish, The finite volume method in computational fluid dynamics, Springer, 113 (2016).
- [23] M. N. Ozisik, Heat transfer: a basic approach,McGraw-Hill New York,1985.
- [24] H. F. Peng, K. Yang, M. Cui, and X. W. Gao, Radial integration boundary element method for solving two- dimensional unsteady convection–diffusion problem, Engineering Analysis with Boundary Elements, 102 (2019), 39–50.
- [25] M. R. Patel and J. U. Pandya, Numerical study of a one and two-dimensional heat flow using finite volume, Materials Today: Proceedings, 51 (2021), 4857.
- [26] M. R. Patel and J. U. Pandya, A research study on unsteady state convection diffusion flow with adoption of the finite volume technique, Journal of Applied Mathematics and Computational Mechanics, 20 (2021), 65–76.
- [27] D. Patil, K. Lakshmisha, and B. Rogg, Lattice Boltzmann simulation of lid-driven flow in deep cavities, Computers & fluids, 35 (2006), 1116–1125.
- [28] O. Satbhai, S. Roy, and S. Ghosh, Direct numerical simulation of a low Prandtl number RayleighBrd convection in a square box, Journal of Thermal Science and Engineering Applications, 11 (2019).
- [29] P. Suhas, Numerical heat transfer and fluid flow, Hemisphere publishing corporation, Etas-Unis dAm´erique, 1980.
- [30] S. Som, Introduction to heat transfer, PHI learning Pvt. Ltd.,2008.
- [31] G. D. Smith, Numerical solution of partial differential equations: finite difference methods,Oxford university press, 1985.
- [32] S. S. Sastry, Introductory methods of numerical analysis, PHI Learning Pvt. Ltd., 2012.
- [33] D. A. Von Terzi, Numerical investigation of transitional and turbulent backward-facing step flows, PhD thesis. The University of Arizona, 2004.
- [34] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method,Pearson education, 2007.
- [35] M. Xu, A modified finite volume method for convection-diffusion-reaction problems, International Journal of Heat and Mass Transfer, 117 (2018), 658–668.
- [36] A. Yaghoubi, High Order Finite Difference Schemes for Solving Advection-Diffusion Equation.
|