- [1] M. Akbarzade and J. Langari, Application of Homotopy perturbation method and variational iteration method to three dimensional diffusion problem, Int. J. Math. Anal., 5 (2011), 871–80.
- [2] M. A. Bayrak and A. Demir, A new approach for space-time fractional partial differential equations by residual power series method, Appl. Math. Comput., 336 (2018), 215-230.
- [3] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36(6) (2000), 1403-1412.
- [4] A. H. Bhrawy, E. A. Ahmed, and D. Baleanu, An efficient collocation technique for solving generalized Fokker- Planck type equations with variable coefficients, In Proc. Rom. Acad. Ser. A., 15 (2014), 322-330.
- [5] A. H. Bhrawy, T. M. Taha, and J. A. T. Machado, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dyn., 81(3) (2015), 1023-1052.
- [6] A. H. Bhrawy, M. M. Tharwat, and M. A. Alghamdi, A new operational matrix of fractional integration for shifted Jacobi polynomials, Bull. Malays. Math. Sci. Soc., 37(4) (2014), 983-995.
- [7] A. H. Bhrawy, M. A. Zaky, and R. A. Van Gorder, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion- wave equation, Numer. Algor., 71(1) (2016), 151-180.
- [8] A. H. Bhrawy and M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876-895.
- [9] A. H. Bhrawy and M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40(2) (2016), 832-845.
- [10] A. H. Bhrawy and M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80(1) (2015), 101-116.
- [11] D. Brockmann, V. David, and A. M. Gallardo, Human mobility and spatial disease dynamics, Rev. Nonlinear Dyn. Complex., 2 (2009), 1-24.
- [12] A. Cartea and D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A: Stat. Mech. Appl., 374(2) (2007), 749-763.
- [13] C. M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227(2) (2007), 886–897.
- [14] Y. Chen, Y. Wu, Y. Cui, Z. Wang, and D. Jin, Wavelet method for a class of fractional convection-diffusion equation with variable coefficients, J. Comput. Sci., 1(3)(2010) 146–149.
- [15] M. Dehghan, S. A. Yousefi, and A. Lotfi, The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations, Comm. Numer. Method Eng., 27 (2011), 219-231.
- [16] Z. Q. Deng, J. L. De Lima, M. I. P. de Lima, and V. P. Singh, A fractional dispersion model for overland solute transport, Water Resour. Res., 42(3) (2006).
- [17] E. H. Doha, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomial, J. Phys. A: Math. Gen., 37(3) (2004), 657-675.
- [18] E. H. Doha, A. H. Bhrawy, and D. Baleanu, Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations, Rom. J. Phys., 59(3-4) (2014), 247-264.
- [19] E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, A new Jacobi operational matrix, an application for solving fractional differential equations, Appl. Math. Model., 36(10) (2012), 4931-4943.
- [20] M. El-Shahed and A. Salem, An extension of Wright function and its properties, J. Math., 2015 (2015).
- [21] E. Hanert, On the numerical solution of space–time fractional diffusion models, Comput. Fluids., 46(1) (2011), 33–39.
- [22] E. Hanert and C. Piret, A Chebyshev pseudo spectral method to solve the space-time tempered fractional diffusion equation, SIAM J. Sci. Comput., 36(4) (2014), A1797–A1812.
- [23] Y. Hu, Y. Luo, and Z. Lu, Analytical solution of the linear fractional differential equation by Adomian decompo- sition method, J. Comput. Appl. Math., 215 (2008), 220-229.
- [24] M. M. Khader, On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear. Sci. Numer. Simulat., 16 (2011), 2535-2542.
- [25] S. Kumar, R. S. Damor, and A. K. Shukla, Numerical study on thermal therapy of triple layer skin tissue using fractional bio heat model, Int. J. Bio math., 11(04) (2018), 1850052.
- [26] S. Kumar and C. Piret, Numerical solution of space-time fractional PDEs using RBF-QR and Chebyshev polyno- mials, Appl. Numer. Math., 143 (2019), 300-315.
- [27] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47(3) (2009), 2108–2131.
- [28] F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation, Appl. Math. Comput., 191(1) (2007), 12–20.
- [29] Y. Luke, The Special Functions and Their Approximations, Academic Press, New York, 1969.
- [30] F. Mainardi and G. Paqnini, The role of the Fox–Wright functions in fractional sub-diffusion of distributed order, J. Comput. Appl. Math., 207(2) (2007), 245–257.
- [31] K. S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, Wiley- Interscience, 1993.
- [32] K. B. Oldham and J. Spanier, The fractional Calculus, Academic Press, New York and London, 1974.
- [33] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- [34] I. Podlubny, Laplace transform method for linear differential equations of the fractional order, 1997.
- [35] M. U. Rehman and R. A. Khan, Numerical solutions to initial and boundary value problems for linear fractional partial differential equations, Appl. Math. Model., 37 (2013) 5233–5244.
- [36] A. Saadatmandi and M. Dehgan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336.
- [37] L. F. Wang, Y. P. Ma, and Z. J. Meng, wavelet method for solving fractional partial differential equations numer- ically, Appl. Math. Comput., 227 (2014), 66–76.
- [38] H. Wang, K. Wang, and T. Sircar, A direct o (n log 2 n) finite difference method for fractional diffusion equations, J. Comput. Phys., 229(21) (2010), 8095-8104.
- [39] L. Wei, H. Dai, D. Zhang, and Z. Si, Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation, Calcolo., 51(1) (2014), 175-192.
- [40] M. A. Zaky and I. G. Ameen, A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions, Numer. Algor., 84(1) (2020), 63-89.
- [41] M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205-222.
- [42] M. A. Zaky and A. S. Hendy, An efficient dissipation-preserving Legendre-Galerkin spectral method for the Higgs boson equation in the de Sitter spacetime universe, Appl. Numer. Math., 160 (2021), 281-295.
- [43] Z. Zhao, Y. Zheng, and P. Guo, A Galerkin finite element scheme for time–space fractional diffusion equation, Int. J. Comput. Math., 93(7) (2016), 1212-1225.
|