- [1] R. Abedian, A symmetrical WENO-Z scheme for solving Hamilton-Jacobi equations, Int. J. Mod. Phys. C, 31 (2020), 2050039.
- [2] R. Abedian, H. Adibi, and M. Dehghan, A high-order symmetrical weighted hybrid ENO-flux limiter scheme for hyperbolic conservation laws, Comput. Phys. Commun., 185 (2014), 106–127.
- [3] R. Abedian, H. Adibi, and M. Dehghan, Symmetrical weighted essentially non-oscillatory-flux limiter schemes for Hamilton-Jacobi equations, Math. Methods Appl. Sci., 38 (2015), 4710–4728.
- [4] R. Abedian and M. Dehghan, RBF-ENO/WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, Numer. Methods Partial Differ. Equ., 37 (2021), 594–613.
- [5] R. Abedian and R. Salehi, A RBFWENO finite difference scheme for Hamilton-Jacobi equations, Comput. Math. with Appl., 79 (2020), 2002–2020.
- [6] L. A. Barba and L. F. Rossi, Global field interpolation for particle methods, J. Comput. Phys., 229, 1292–1310.
- [7] J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys.,85 (1989), 257–283.
- [8] D. L. Brown and M. L. Minion, Performance of under-resolved two-dimensional incompressible flow simulations, J. Comput. Phys., 122 (1995), 165–183.
- [9] S. Bryson and D. Levy, Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations, Appl. Numer. Math., 56 (2006), 1211–1224.
- [10] A. Chertock and A. Kurganov, On Splitting-Based Numerical Methods for Convection-Diffusion Equations, Quad. Mat., 24 (2009), 303–343.
- [11] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high-order essentially non-oscillatory schemes, III, J. Comput. Phys., 71 (1987), 231–303.
- [12] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes I, SIAM J. Numer. Anal., 24 (1987), 279–309.
- [13] A. K. Henrick, T. D. Aslam, and J. M. Powers, Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J. Comput. Phys., 207 (2005), 542–567.
- [14] G.-S. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (2000), 2126–2143.
- [15] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202–228.
- [16] P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex, J. Comput. Phys., 138 (1997), 821–857.
- [17] A. Kurganov, S. Noelle, and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations., SIAM J. Sci. Comput., 23 (2001), 707–740.
- [18] X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), 200–212.
- [19] M. Melander, J. McWilliams, and N. Zabusky, Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation, J. Fluid Mech., 178 (1987), 137–159.
- [20] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys, 87 (1990), 408–463.
- [21] S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12–49.
- [22] S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28 (1991), 907–922.
- [23] A. A. I. Peer, M. Z. Dauhoo, A. Gopaul, and M. Bhuruth, A weighted ENO-flux limiter scheme for hyperbolic conservation laws, Int. J. Comput. Math, 87 (2010), 3467–3488.
- [24] A. Robinson and P. Saffman, Stability and structure of stretched vortices, Stud. Appl. Math., 70 (1984), 163–181.
- [25] P. Saffman, M. Ablowitz, E. Hinch, J. Ockendon, and P. Olver, Vortex dynamics, Cambridge University Press, Cambridge, 1992.
- [26] S. Serna and A. Marquina, Power ENO methods: a fifth-order accurate weighted power ENO method, J. Comput. Phys., 194 (2004), 632–658.
- [27] S. Serna and J. Qian, Fifth order weighted power-ENO methods for Hamilton-Jacobi equations, J. Sci. Comput., 29 (2006), 57–81.
- [28] C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), 439–471.
- [29] C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes II, J. Comput. Phys., 83 (1989), 32–78.
- [30] Z. Tao and J. Qiu, Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations, Adv. Comput. Math., 43 (2017), 1023–1058.
- [31] T. Xiong, G. Russo, and J.-M. Qiu, High order multi-dimensional characteristics tracing for the incompressible Euler equation and the guiding-center Vlasov equation, J. Sci. Comput., 77 (2018), 263–282.
- [32] F. Zheng, C.-W. Shu, and J. Qiu, Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations, J. Comput. Phys., 337 (2017), 27–41.
- [33] J. Zhu and J. Qiu, A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations, Numer. Methods Partial Differ. Equ., 33 (2017), 1095–1113.
|