تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,225 |
تعداد دریافت فایل اصل مقاله | 15,216,892 |
بررسی تأثیر اصلاح بیولوژیک بر افزایش مقاومت خاکهای سیلتی قلیایی مناطق خشک و نیمهخشک در برابر فرسایش ناشی از آب و باد (مطالعه موردی: کویر میقان) | ||
نشریه مهندسی عمران و محیط زیست دانشگاه تبریز | ||
مقاله 11، دوره 53.2، شماره 111، شهریور 1402، صفحه 119-135 اصل مقاله (962.22 K) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jcee.2022.48805.2090 | ||
نویسندگان | ||
هما شفیعی1؛ سهیل قره* 2؛ سید حمید لاجوردی1؛ احسان اله ضیغمی1؛ محبوبه پورکلهر3 | ||
1گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی | ||
2گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی / بخش فنی و مهندسی، دانشگاه پیام نور، تهران - گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی | ||
3گروه شیمی، پژوهش سرای خواجه نصیر قم | ||
چکیده | ||
فرسایش ناشی از باد در سطح خاک، سبب ایجاد گردوغبار و تهدید سلامت انسان و محیطزیست میگردد. علیرغم تحقیقات متعدد انجامشده بر فرآیند ایجاد پوسته زیستی بهواسطه رسوب کلسیت (Calcite) ناشی از فعالیت باکتری در خاکهای درشتدانه، مطالعات کافی بهمنظور استفاده از این روش در بهسازی خاکهای ریزدانه سیلتی از نوع شور و قلیایی صورت نگرفته است. در مطالعه حاضر از باکتری اسپورسارسینا پاستئوری (Sporosarcina pasteurii) جهت ایجاد پوسته زیستی بر روی خاک سیلتی منطقه کویر میقان بهمنظور جلوگیری از پدیده گردوغبار استفاده شده است. نمونههای خاک با مقادیر متفاوت باکتری (از نظر غلظت و میزان باکتری بر سطح) آماده شدند. نمونههای آمادهشده پس از طی روزهای عملآوری متفاوت در دستگاه تونل باد ساختهشده در راستای این مطالعه قرار گرفتند. پس از اتمام آزمایش تونل باد میزان فرسایش سطحی نمونهها اندازهگیری شد. جهت بررسی بیشتر، آزمایــشهای ذوب و یخ، آب شستگی، نفوذ مخــــروط، هـدایت الکتریکی، pH و آنالیـزهای میکروسکـوپ الکتـرونی روبشــی (Scanning Electron Microscope (SEM)) و پراش اشعه ایکس (X-Ray Diffraction (XRD)) نیز بر روی نمونهها انجام شده است. جهت مقایسه تثبیت با باکتری و تثبیتکنندههای متداول، نمونههایی با شرایط مشابه از سیمان و آهک آماده شده و فرسایش سطحی ناشی از باد در آنها اندازهگیری شده است. نتایج این مطالعه نشان داد که ایجاد پوسته سطحی به روش MICP (Microbial Induced Calcium Carbonate Precipitation)، فرآیندی مؤثر جهت کنترل گردوغبار ناشی از فرسایش بادی در منطقه میباشد. با استفاده از فرآینــد پوسته زیستی در نمونههای 28 روزه، 95 درصـد افزایش در مقاومت سطحی و 8/89 درصد کاهش در میزان فرسایش بادی مشاهده شده است. | ||
کلیدواژهها | ||
پوسته زیستی؛ سیلت؛ قلیایی؛ تونل باد؛ فرسایش سطحی؛ دوام؛ ریزساختار | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
اصغری کلجاهی ا، حسینپور اصل کلیبر س، ندیری ع،"بررسی امکان ایجاد ریزگردهای نمکی در پهنه شمال شرقی دریاچه ارومیه"، پژوهش های فرسایش محیطی، 1397، 8 (2)، 42-61.
صالحی م ح، اسفندیارپور بروجنی ع، باقری بداغآبادی م، مهاجر ر،"حفاظت آب و خاک تکمیلی"، دانشگاه پیام نور، 1394.
دستورالعمل فنی، "ارزیابی کارایی تثبیت کنندههای خاک (مالچ)-ضابطه شماره 783"، 1398.
ملکی کاکلر م، ابراهیمی س، اسدزاده ف، امامی تبریزی م، "ارزیابی کارایی رسوب میکروبی کربنات برای تثبیت شن های روان"، تحقیقات آب و خاک ایران (علوم کشاورزی ایران)، 1395، 47 (2)، 407-415.
منتظری م، "شناسایی روند تغییرات بارش در حوضه کویر میقان"، مجموعه مقالات اولین همایش ملی مقابله با بیابانزایی و توسعه پایدار تالابهای کویری ایران، اراک، 26 خرداد، 1389.
Abo-El-Enein SA, Ali AH, Talkhan FN, Abdel-Gawwad HA, “Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation”, HBRC Journal, 2012, 8, 185-192. https://doi.org/10.1016/j.hbrcj.2013.02.001 Achal V, Mukherjee A, “A review of microbial precipitation for sustainable construction”, Construction and Building Materials, 2015, 93, 1224-1235. Bang S, Min SH, Bang SS, “Application of Microbiologically Induced Soil Stabilization Technique for Dust Suppression”, International Journal of Geo-Engineering, 2011, 3, 27-37. Chen X, Hu S, Shen C, Dou C, Shi J, Chen Y, “Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution”, Bioresour Technol, 2009, 100, 330-337. https://doi.org/10.1016/j.biortech.2008.04.051 Cuadros J, Spiro B, Dubbin W, Jadubansa P, “Rapid microbial stabilization of unconsolidated sediment against wind erosion and dust generation”, Journal of Soils Sediments, 2010, 10, 1415-1426. https://doi.org/10.1007/s11368-010-0273-8 De Lima JLMP, Tavares P, Singh VP, De Lima MIP, “Investigating the nonlinear response of soil loss to storm direction using a circular soil flume”, Geoderma, 2009, 152, 9-15. De Muynck W, De Belie N, Verstraete W, “Microbial carbonate precipitation in construction materials: A review”, Ecological Engineering, 2010, 36, 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006 Dejong JT, Mortensen BM, Martinez BC, Nelson DC, “Bio-mediated soil improvement”, Ecol Engineering, 2010, 36, 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029 DeJong JT, Soga K, Banwart SA, Whalley WR, Ginn TR, Nelson DC, Mortensen BM, Martinez BC, Barkouki T, “Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions”, Journal of Roy. Soc. Inter,2011, 8, 1-15. Dejong JT, Soga K, Kavazanjian E, Burns S, Van Paassen LA, Al Qabany A, Aydilek A, Bang SS, Burbank M, Caslake LF, Chen CY, “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. In: Bio-and Chemo-Mechanical Processes in Geotechnical Engineering-Geotechnique Symposium in Print 2013”, ICE Publishing, 2013, 143-157. DSMZ,“German Collection of Microorganisms and Cell Cultures GmbH. In: Labrys portucalensis”, 2019. Duo L, Kan-liang T, Hui-li Z, Yu-yao, W, Kang-yi N, Shi-can Z, “Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation”, Constr Build Mater, 2018, 172, 251-262. https://doi.org/10.1016/j.conbuildmat.2018.03.255 Stocks-Fischer SJK, Galinat SS, Bang “Microbiological precipitation of CaCO3”, Soil Biology and Biochemistry, 1999, 31, 1563-1571. Fujita Y, Taylor JL, Gresham TL, Delwiche ME, Colwell FS, McLing TL, Petzke LM, Smith RW, “Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation”, Environmental Science and Technology, 2008, 42, 3025-3032. https://doi.org/10.1021/es702643g Gao L, Sun H, Xu M, Zhao Y, “Biocrusts resist runoff erosion through direct physical protection and indirect modification of soil properties”, Journal of Soils Sediments, 2020, 20, 133-142. Gao Y, Hang L, He J, Chu J, “Mechanical behaviour of biocemented sands at various treatment levels and relative densities”, Acta Geotech, 2019, 14, 697-707. https://doi.org/10.1007/s11440-018-0729-3 Ghazavi M, Roustaie M, “The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay”, Cold Regions Science and Technology, 2010, 61, 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005 Graham J, Au VCS, “ Effects of freeze-thaw and softening on a natural clay at low stresses”, Canadian Geotechnical Journal, 1985, 22, 69-78. https://doi.org/10.1139/t85-007 He J, Chu J, Liu HL, Gao YF, “Microbial soil desaturation for the mitigation of earthquake liquefaction”, 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 2015 New Innov Sustain, 784-787. https://doi.org/10.3208/jgssp.SEA-05 Ivanov V, Chu J, “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev”, Environmental Science and Bio-Technology, 2008, 7, 139-153. Ivanov V, Chu J, Stabnikov V, Li B,“ Strengthening of Soft Marine Clay Using Bioencapsulation”, Mar Georesources Geotechnol, 2015, 33, 325-329. https://doi.org/10.1080/1064119X.2013.877107 Ivanov V, Stabnikov V, “Construction biotechnology: biogeochemistry, microbiology and biotechnology of construction materials and processes”, Springer, 2016. Ivanov V, Stabnikov V, “Construction Biotechnology Biogeochemistry, Microbiology and Biotechnology of Construction Materials and Processes Preface”, Springer, 2017. Jiang NJ, Soga K, Kuo M, “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559 Keykha HA, Asadi A, Zareian M, “Environmental Factors Affecting the Compressive Strength of Microbiologically Induced Calcite Precipitation-Treated Soil”, Geomicrobiol J, 2017, 34, 889-894. https://doi.org/10.1080/01490451.2017.1291772 Kim D, Park K, Kim D, “Effects of ground conditions on microbial cementation in soils”, Materials (Basel), 2014, 7, 143-156. https://doi.org/10.3390/ma7010143 Kim G, Kim J, Youn H, “Effect of Temperature, pH, and Reaction Duration on Microbially Induced Calcite Precipitation”, mdpi.com, 2018, 8. https://doi.org/10.3390/app8081277 Knorr B, “Enzyme-induced carbonate precipitation for the mitigation of fugitive dust”, MastersThesis, Arizona State University, 2014. Koponen HT, Jaakkola T, Keinänen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K, Martikainen PJ, “Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles”, Soil Biology and Biochemistry, 2006, 38 (7), 1861-1871. https://doi.org/10.1016/j.soilbio.2005.12.010 Lee KT, Huang JK, “Effect of moving storms on attainment of equilibrium discharge”, Hydrol. Process, 2007, 21, 3357-3366. Meyer FD, Bang S, Min S, Stetler LD, Bang SS, “Microbiologically-induced soil stabilization: Application of sporosarcina pasteurii for fugitive dust control”, Geo-frontiers 2011: Advances in Geotechnical Engineering, 2011, 4002-4011. https://doi.org/10.1061/41165(397)409 Mortensen BM, Haber MJ, DeJong JT, Caslake LF, Nelson DC, “Effects of environmental factors on microbial induced calcium carbonate precipitation”, Journal of Applied Microbiology, 2011, 111, 338-349. https://doi.org/10.1111/j.1365-2672.2011.05065.x Omoregie AI, Ngu LH, Ong DEL, Nissom PM, “Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application”, Biocatal Agric Biotechnol, 2019, 17, 247-255. https://doi.org/10.1016/j.bcab.2018.11.030 Omoregie AI, Khoshdelnezamiha G, Senian N, Ong DEL, Nissom PM, “Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials”, Ecological Engineering, 2017, 109, 65-75. https://doi.org/10.1016/j.ecoleng.2017.09.012 Pacheco-Torgal F, Labrincha JA, Diamanti MV, Yu CP, Lee HK, “Biotechnologies and biomimetics for civil engineering”, Biotechnol Biomimetics Civil Engineering, 2015, 1-437. https://doi.org/10.1007/978-3-319-09287-4 Qabany AA, Mortensen B, Martinez B, Soga K, DeJong J, “Microbial carbonate precipitation: Correlation of S-wave velocity with calcite precipitation”, In: Geotechnical Special Publication, 2011, 3993-4001. Qi J, Ma W, Song C, “Influence of freeze-thaw on engineering properties of a silty soil”, Cold Regions Science and Technology, 2008, 53, 397-404. https://doi.org/10.1016/j.coldregions.2007.05.010 Ramakrishnan V, Ramesh KP, Bang SS, “Bacterial concrete”, In: Smart Materials. SPIE, 2001, 168-176. Rong H, Qian CX, Li LZ, “Study on microstructure and properties of sandstone cemented by microbe cement”, Constr Build Mater, 2012, 36, 687-694. https://doi.org/10.1016/j.conbuildmat.2012.06.063 Shi ZH, Fang NF, Wu FZ, Wang L, Yue BJ, Wu GL, “Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes”, Journal of Hydrology, 2012, 454, 123-130. Salifu E, MacLachlan E, Iyer KR, Knapp CW, Tarantino A, “Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation”, Engineering Geology, 2016, 201, 96-105. https://doi.org/10.1016/j.enggeo.2015.12.027 Shahrokhi-Shahraki R, Zomorodian SMA, Niazi A, Okelly BC, “Improving sand with microbial-induced carbonate precipitation”, Proceedings of the Institution of Civil Engineers-Ground Improvement, 2015, 168, 217-230. https://doi.org/10.1680/grim.14.00001 Stabnikov V, Naeimi M, Ivanov V, Chu J, “Formation of water-impermeable crust on sand surface using biocement”, Cement and Concrete Research, 2011, 41, 1143-1149. https://doi.org/10.1016/j.cemconres.2011.06.017 Stocks-Fischer S, Galinat JK, Bang SS, “Microbiological precipitation of CaCO3”, Soil Biol Biochem, 1999, 31, 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6 Van Paassen LA, Daza CM, Staal M, Sorokin DY, Van Der Zon W, Van Loosdrecht MC, “Potential soil reinforcement by biological denitrification”, Ecological Engineering, 2010, 36, 168-175. https://doi.org/10.1016/j.ecoleng.2009.03.026 Wang DY, Ma W, Niu YH, Chang XX, Wen Z, “Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay”, Cold Regions Science and Technology, 2007, 48, 34-43. Wang T, Li P, Ren Z, Xu G, Li Z, Yang Y, Tang S, Yao J, “Effects of freeze-thaw on soil erosion processes and sediment selectivity under simulated rainfall”, Journal of Arid Land, 2017, 9, 234-243. https://doi.org/10.1007/s40333-017-0009-3 Wang Z, Zhang N, Ding J, Lu C, Jin Y, “Experimental Study on Wind Erosion Resistance and Strength of Sands Treated with Microbial-Induced Calcium Carbonate Precipitation”, hindawi.com,2018. https://doi.org/10.1155/2018/3463298 Warthmann R, Marie Karpoff A, “Bacterially induced dolomite precipitaion in anoxic culture experiments Margin Tectonics View project Microbial pre-treatment of fibrous material to enhance biogas production View project”, Geology, 2000. https://doi.org/10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2 Weaver TJ, Burbank M, Lewis A, Lewis R, Crawford R, Williams B, “Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications”, In: Geotechnical Special Publication, 2011, 3975-3983 Yao X, Qi J, Ma W, “ Influence of freeze-thaw on the stored free energy in soils”, Cold Regions Science and Technology, 2009, 56, 115-119. https://doi.org/10.1016/j.coldregions.2008.11.001 Zydlik Z, Zydlik P, “The effect of microbiological products on soil properties in the conditions of replant disease”, Zemdirbyste, 2013, 100, 19-24. https://doi.org/10.13080/z-a.2013.100.003 | ||
آمار تعداد مشاهده مقاله: 409 تعداد دریافت فایل اصل مقاله: 166 |