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Abstract 

EvoStream is a stream clustering algorithm which gradually clusters data in the idle times of the stream. In comparison 

with other algorithms in this field, EvoStream has a lower computation overload in the offline phase and has better 

accuracy. Also, in this algorithm, the number of clusters is taken as constant whereas in an authentic stream this number 

varies with the complexity of input data. In this work, we present DynamicEvoStream as an improved version of the 

original EvoStream. In this algorithm, we detect and exploit variations in the distribution and speed of the stream.  Also, 

we modified the cleanup function to merge overlapping clusters. Therefore, in contrast to the basic EvoStream, 

DynamicEvoStream identifies the number of clusters in a dynamic manner. Also, the speed of evolutionary steps is 

increased while improving the quality of the clusters. Finally, experiments using DynamicEvoStream on different streams 

showed that it can cluster the stream up to four times faster than the original EvoStream with fewer computation and 

memory resources. In the worst case, the quality of clusters is competitive to the original EvoStream, however improves 

the quality of clusters up to 30% in the majority of cases. 
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1. Introduction 

In today's world, the emergence of Internet of Things 

(IoT)[1], advancements in hardware technologies, the 

large number of websites and large companies such as 

Amazon have led to the production of huge amounts of 

various data at an increasing pace. These data can be 

processed in two ways: batch processing or stream 

processing. In batch processing, the data are assumed to 

be static and the results of the process will be available 

as soon as the computation on all data has been finished. 

In contrast, in some applications, all the required data for 

processing are not available and are produced over time. 

These data are given to a data stream management system 

(DSMS) through one or more ongoing streams in order 

to be processed in a real-time and almost sequential 

manner. In data stream processing, the results should be 

prepared with minimal delay and the result of each 

process should be reflected in the last output in a few 

seconds. From a commercial point of view, data stream 

processing provides a competitive advantage that helps 

companies and organizations to achieve new insights and 

customize their services. This can result in better and 

more rapid realization of organizational objectives. The 

reason is that, in response to the changing circumstances 

of business environments, organizations are now 

compelled to process large amounts of data as quickly as 

possible and adapt themselves to the changes based on 

the results of these processes. Thus, demands for stream 

processing are increasing [2-4]. 

A data stream can be defined as an incessant sequence of 

data which are produced in large amounts at a high rate. 

In other words, it is a sequence of data objects in time 

intervals. Given this definition, processing the 

information within a stream as a single entity is 

extremely difficult and sometimes impossible. Therefore, 

a number of methods have so far been proposed to 

facilitate the processing of such data. One of the most 

common methods is clustering whereby similar 

information items are placed into a group [5-7]. 

Researchers have developed numerous methods for 

stream clustering. The majority of the proposed 

algorithms make use of a two-phase approach consisting 

of online and offline phases. Each of these phases is 

conducted using online and offline components, 

respectively. The online component summarizes the 

stream in a real-time manner. As a result, small primary 

clusters are created in the stream called “micro-clusters” 

which indicate the dense areas in the data space of the 

stream. As soon as clustering is requested, an offline 

component converts these micro-clusters into macro-

clusters which indicate the finally identified clusters in 

the stream. In cases where data generation in the stream 

is slow, the offline component becomes idle and waits for 

the next observation to come. This will waste the 

resources of the system. EvoStream is an algorithm 

proposed to overcome this problem. This algorithm uses 

idle times for building, updating, and modifying clusters 

in order to efficiently reduce the computation overload of 

the offline phase [6]. 

In EvoStream, the number of final clusters is given as an 

input parameter, which may lead to incorrect results in 

non-uniform streams. In addition, the offline component 

in EvoStream uses genetic algorithm. If the clustering 

request is received before the completion of evolutionary 
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steps, the algorithm will need an auxiliary component to 

modify the results of the offline component. The other 

input parameter is a constant value which specifies the 

threshold of initializing final solutions or macro-clusters. 

Even if the radius is determined with relatively high 

precision, the constancy of this value in streams with 

non-uniform distribution will break a single cluster into 

several ones and decrease the quality of clusters. 

To overcome these issues, the present paper proposes an 

algorithm that dynamically determines the number of  

clusters using the notion of shared radius among clusters 

and based on the DBSCAN algorithm [8]. Upon 

clustering request, a new offline component will be used 

if the execution of evolutionary steps has not been 

completed in previous idle intervals or a change in the 

stream distribution has invalidated the results of the 

previous evolutionary step. To put it more exactly, by 

using this algorithm, the clustering request will never 

remain unhandled and the quality of clustering will 

always be acceptable. In this component, some concepts 

existing in DBSCAN algorithm are used for finding the 

number of clusters and clustering the data. To improve 

the quality of clusters, micro-clusters with the highest 

fitness are selected as primary clusters.  

To evaluate our proposed algorithm, it was tested using 

real-world data streams and the results were compared 

with the execution of EvoStream. As EvoStream has 

already been compared in [6] with many of the existing 

algorithms, comparing our algorithm with EvoStream 

can be a good measure of desirability and efficiency.  

In summary, the paper contributions are 

1) Determinig the number of clusters dynamically 

2) Increasing the quality of clusters 

3) Increasing the clustering speed  

4) Decreasing memory consumption and 

caluculation requirements 

The paper is organized as follows. Section 2 explains the 

fundamentals of stream clustering and reviews the 

literature. Section 3 discusses the concepts of 

evolutionary optimization and EvoStream algorithm. 

Section 4 introduces the new algorithm for stream 

clustering which is called DynamicEvoStream and 

Section 5 evaluates the performance of this algorithm.  

The final section draws conclusions and describes future 

directions of research in this area. 

 

2. Related works  

In general, clustering is aimed at identifying patterns and 

groups of similar objects in the data [۹]. Traditional 

clustering algorithms require several passes of data as 

well as random access to the data to be able to cluster the 

data. If a new piece of data is added, the entire model 

must be reconstructed, which is ineffective in terms of 

time and costs. On the other hand, when there is a large 

amount of data, multi-pass clustering algorithms are not 

efficient; therefore, single-pass algorithms have been 

proposed as a solution. During the creation of the 

clustering model, these algorithms process each data item 

only once. However, these methods are still inefficient 

for many applications where the data are produced as a 

continuous stream of observations over time. It should be 

noted that, in these applications, there is not a fixed set of 

data [6]. 

To satisfy the conditions of data stream processing such 

as unlimited volume of data and the impossibility of 

storing all the observations as well as high rates of data 

production and the necessity of real-time processing, the 

first proposed approaches to stream clustering revolved 

around incremental learning. In this kind of algorithms, a 

statistical model for the data is generated based on stream 

distribution and evolves over time. Also, to overcome 

memory limitations, only one or more representatives are 

stored instead of all the observations. Examples of this 

Table 1 - Stream clustering algorithms[14-24]. 

Algorithm Year Pros Cons 

DenStream 2006 - Handling arbitrary shapes clusters 

- Detection of outliners 

- Time complexity 

CluDistream 2007 - Handling missing and noise data - Based on the landmark window scenario   

- Parameter sensitivity 

D-Stream 2009 - Detecting arbitrary shapes clusters - Time complexity when handling high 

dimensional data 

SWEM 2009 - Handling missing data 

- Handling memory limitation 

- Parameter sensitivity 

SNCStream 2015 - Quality clusters accordingly to the CMM 

- Scale-free model 

- Parameter sensitivity   

DCSTREAM 2016 - Memory efficiency   

- Handling concept drift 

- Outlier detection 

CEDAS 2017 - Handling noise  

- Drift and anomaly detection 

- Handling high dimensional data  

- Memory requirement   

SODA 2018 - High quality of clusters 

- Computation efficiency 

- Initial seed dataset 

FStream 2018 - Fewer parameter to define - Training set requirement   

DGStream 2019 - Handling outliers 

- Handeling noise 

- Detecting arbitrary shapes clusters 

- Need to detect dense grids 

ACSC  2019 - Few parameters required  

- Handeling noise 

- Parameter sensitivity  

- Not able to detect arbitrary shapes clusters   
- Not able to work well in multi density data 
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approach can be found in [10-13]. Since in incremental 

learning approaches a model should be built, many initial 

parameters must be provided and the computation 

complexity is high. Thus, implementation of such 

algorithms is difficult. In these algorithms, when the 

model is updated after new observations arrive, some 

clusters are merged or removed. In the course of 

observing the stream, some of the previous instances of 

merging may turn out to have been incorrect. But as the 

representatives of previous clusters have been removed, 

the merged clusters cannot be returned to the original 

clusters [25-27]. 

A proposed solution to this problem was two-phase 

online-offline learning. In the online phase, the received 

data are summarized in real time [28] and micro-clusters 

are formed. The number of micro-clusters is greater than 

the main clusters in the stream. In the offline phase, the 

final clustering is performed with the help of micro-

clusters and the response is sent to the user. The two-

phase method is able to easily handle large streams. The 

major issue in this method is that users must wait for the 

data required for their request to be received, summarized, 

and stored by the system [25-27]. The majority of stream 

clustering algorithms make use of the two-phase method. 

More than 60 important algorithms for stream clustering 

have so far been developed. Table 1 lists some of the 

important algorithms by the year of publication. 

 
3. EvoStream: Evolutionary stream Clustering 

utilizing idle times 

As mentioned earlier, the majority of stream clustering 

algorithms make use of the two-phase learning method. 

In these algorithms, the online and offline phases are 

performed by the online and offline components, 

respectively. The online component is responsible for 

analyzing the stream and creating the necessary elements 

of processing for the offline component. For this reason, 

in cases where the speed of stream is slow, this 

component becomes idle and waits for the next 

observation to arrive. This will waste the resources of the 

system. EvoStream is a stream clustering algorithm that 

has been proposed as a solution. This algorithm utilizing 

idle times for building, refining, and modifying clusters 

in order to efficiently reduce the computation overload of 

the offline phase.  

The online component processes the arriving data as 

quickly as possible and uses DBSTREAM algorithm 

strategy for summarization of the data. Researchers in 

[28] compared the most popular stream clustering 

algorithms and showed that the clusters produced by 

DBSTREAM had the highest quality and the lowest 

computation time. In EvoStream, every micro-cluster is 

described as a tuple (c, t, ω) in which c is the cluster’s 

centre, t is the last time the micro-cluster was updated, 

and ω is the weight of the micro-cluster. If the new 

observation x falls within the radius R from the centre c, 

the online component assigns the observation to this 

micro-cluster. Following the idea of competitive learning, 

the cluster or clusters which have absorbed x will move 

toward x by a magnitude determined by the Gaussian 

function (Equation 1): 

 

h(x . c) = exp (−
(|x−c|2∕3r)

2

2
)                                           (1)         

 

If x is absorbed by multiple clusters, all of them will 

move toward x. After absorbing a new observation, the t 

and ω of any micro-cluster that has absorbed that 

observation will be updated. If the observation is not 

absorbed by any cluster, a new cluster will be created in 

its place. In addition, the online component of EvoStream 

executes a cleanup function in regular intervals. This 

function merges the micro-clusters which overlap by 

more than half of their radii. The reason for doing this is 

that the observations absorbed by these micro-clusters 

may probably belong to an identical micro-cluster. Also, 

micro-clusters whose weight is less than an acceptable 

threshold will be recognized as outdated and eliminated. 

After creating an γ for the micro-cluster (a specified 

threshold), the online component initializes macro-

clusters C by random use of micro-clusters. In the 

experiments, it was assumed that γ = 2k. 

The offline component of the algorithm is executed when 

either there is no new observation or the stream is running 

slowly. Determining whether a stream is active or 

inactive is difficult and usually requires expert 

knowledge. In its offline component, EvoStream makes 

use of an evolutionary algorithm similar to genetic 

algorithms [29] in order to gradually improve the macro-

clusters which are initialized in the online phase. 

In a genetic algorithm, first, a population of possible 

solutions to the problem is selected or generated and, then, 

the solutions evolve based on the rules of selection and 

other operators such as recombination and mutation. The 

quality of each individual from the population is assessed 

by the fitness function. Each individual is coded using a 

string representation called a chromosome. Each 

chromosome consists of several genes. Hereafter, we 

shall use the term chromosome instead of individual for 

the sake of facilitating our discussion. To create a new 

population, chromosomes with higher fitness are selected 

as parents and begin to exchange genes by using 

recombination and mutation operators. This process 

results in the generation of new chromosomes called 

offspring. The offspring chromosomes will replace the 

chromosomes in the existing population if their fitness is 

higher. This repetitive process will continue until the 

condition(s) of the termination of the algorithm is 

satisfied [6, 30]. 

One of the most common evolutionary algorithms for 

data clustering is GA-clustering [31]. In EvoStream, the 

offline component uses a method similar to GA-

clustering which has been adapted to the two-phase 

learning approach to stream clustering. The offline 

component makes use of fast clustering by utilizing 

cluster variance to evaluate the solutions. The number of 

clusters is considered as fixed and the solution of 

clustering the data space is stored as a string which 

contains the centres of the discovered clusters. This string 

represents the concept of chromosome in the genetic 

algorithm. For instance, in a d-dimensional space with 

two clusters, the first d genes of the chromosome indicate 

the dimensions of the centre of the first cluster while the 
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next d genes show the centre of the second cluster. Also, 

if the number of clusters is k and each cluster centre has 

d attributes, each chromosome is coded in form of a k*d 

string as a solution to data clustering. To create each 

chromosome in the starting population of the genetic 

algorithm, the cluster centres for each solution are 

randomly selected. Next, the remaining points on the data 

which have not been selected as centres are assigned to 

the closest cluster centre as in the k-means algorithm. It 

should be noted that the appropriate number of 

individuals in the starting population should be 

determined beforehand by the expert of the system. The 

original chromosomes are not necessarily optimum 

solutions to clustering and are likely to evolve during the 

execution of the genetic algorithm [6]. 

After generating the initial population, the fitness of the 

chromosomes is evaluated and two chromosomes with 

the highest fitness are selected as parents using a simple 

Roulette wheel. The shorter the distance inside clusters, 

the higher the fitness of the chromosome. Then the 

selected parents will be used for recombination and 

generation of new offspring. The recombination uses 

single-point crossover whereby a point is randomly 

selected on the chromosome and the parents’ genes are 

exchanged as in Figure 1, which results in two offspring. 
 

 

Fig. 1. An instance of single-point crossover in gene 3 

(the red line) 

 

Next, all the genes of the offspring (gi) mutate with a 

specific probability (Pm) which amounts to the 

probability of mutation in the GA-clustering algorithm. 

Therefore, the value of 2δ·gi (where δ is a random 

variable in [0, 1]) either increases or decreases with equal 

probability. If gi=0, the value of the i-th gene mutates to 

2δ. Finally, the offspring are evaluated by the fitness 

function and they will replace previous chromosomes if 

their fitness is greater than that of the current population. 

This process will continue until the condition for the 

termination of the genetic algorithm (i.e. achieving a 

certain number of generations) is satisfied. Thus, each 

generation is better than the previous generation. 

In EvoStream, the fitness function is calculated using the 

sum of squares (SSQ). Equation 2 calculates the sum of 

squares. 
 

SSQ = ∑ ∑ (𝑚𝑐[𝑐] − 𝐶𝑖)2                                              
𝑚𝑐 ∈ Ci

𝐾
𝑖=1  (2) 

 

The fitness function in EvoStream is defined as f=1/SSQ. 

Whenever the final clusters are requested, the 

chromosome with the highest fitness will be presented as 

the best clustering. In this algorithm, the number of 

clusters is given as an input parameter. This value is 

considered fixed and should be provided by the expert 

who is expected to have sufficient knowledge of the 

stream. Importantly, the number of clusters in real-world 

streams cannot be regarded as fixed in all moments due 

to the complexity of input data. On the other hand, even 

if the number of clusters is assumed to be fixed in the 

stream, the expert’s error in recognizing the correct 

number of clusters may result in faulty results. 

The offline component in EvoStream uses genetic 

algorithm. As the idle time of a stream does not follow a 

periodic pattern with a specific periodicity, if the duration 

of the execution of the evolutionary steps of the genetic 

algorithm is longer than the idle time, it will be stopped 

and we have to wait for the next idle time to complete the 

steps. If the clustering request is received before the 

completion of evolutionary steps, the algorithm will need 

an auxiliary component to modify the results of the 

offline component. Otherwise, the quality of the clusters 

will severely deteriorate. In addition, EvoStream 

considers the changes of micro-clusters between two idle 

times by updating the fitness function of the micro-

clusters at the beginning of each idle time. If the number 

of clusters in the stream is variable, it is no longer 

possible to use the results of the previous idle time and 

complete the evolutionary steps by merely updating their 

fitness function. Instead, the genetic algorithm should be 

executed once again. 

Another constant parameter is the initialization threshold 

of final solutions or macro-clusters. In streams with non-

uniform distribution, if the radius is determined with 

relatively high precision, assuming the constant 

parameter may break a cluster into several clusters and 

decrease the quality of clusters, which could waste 

memory and increase the computational load. In the 

worst case, the number of micro-clusters never reaches 

the threshold; therefore, the evolutionary algorithm will 

never be executed. As a result, DynamicEvoStream 

algorithm was is proposed here to overcome the 

mentioned problems. 

 

 

4. DynamicEvoStream algorithm  

This algorithm dynamically recognizes the number of 

clusters using the notion of the common radius of clusters 

and based on DBSCAN algorithm. As long as the stream 

is active, the new observations are read and processed 

similarly to what happens in EvoStream. The pseudocode 

of the online component is summarized in Algorithm 1. 

In the online component, a cleanup function is executed 

in fixed periods as in EvoStream. This function merges 

overlapping micro-clusters by calculating their overlap 

radius. To remove outdated micro-clusters or noises, the 

cleanup function uses an exponential fading function. 

Using this function, the weight of each micro-cluster in 

each time unit is reduced by 2-λ. When the weight of a 

micro-cluster reaches below a fading threshold, it is 

removed by the cleanup function. As removing or 

merging clusters may indicate changes in the distribution 

of the stream, the proposed algorithm defines a flag 

called Change_stream_distribution for representing the 

probability of change in stream distribution which is 

activated in the event of removing or merging clusters. 
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The pseudocode of the cleanup function is summarized 

in Algorithm 2. 

In the online component, the two flags slowstream and 

Change_stream_distribution are checked when 

responding to clustering requests. Slowstream flag is 

used to recognize the speed of the stream. This flag is 

activated when the stream is slow and the algorithm can 

achieve clustering with acceptable quality by completing 

the evolutionary steps of the genetic algorithm in idle 

times (Algorithm 1, line 2). When responding to 

clustering requests, a disabled speed flag means that the 

speed of the stream is high and the algorithm has not 

succeeded in completing the evolutionary steps. As a 

result, DynamicEvoStream uses a new offline component 

to present the result in high-speed streams. After the 

stream speed flag is checked, the stream distribution 

change flag will be checked if the stream is slow. If 

Change_stream_distribution is enabled, it indicates that 

the clustering from the evolutionary algorithm in the 

previous idle time is no longer valid because the cleanup 

function was executed after the idle time and removed or 

merged several micro-clusters. In this case, 

DynamicEvoStream uses the new offline component 

(Algorithm 3) for clustering. If the stream distribution 

change flag is disabled, the online component will return 

the results of the genetic algorithm which were obtained 

in the previous idle time. 

The new offline component makes use of the concepts of 

DBSCAN algorithm to discover the number of clusters. 

First, the micro-clusters are sorted by their fitness in 

descending order. Next, for each micro-cluster, the 

closest micro-cluster which falls within the radius of 

overlap is identified.  From among the near micro-

clusters which fulfill the criterion of radius overlap, two 

micro-clusters with the smallest distance are merged. If a 

micro-cluster is located within the radius of overlap with 

several other micro-clusters, it will be merged with the 

micro-cluster with the highest fitness. This process will 

continue until no two micro-clusters fall within the radius 

overlap of each other. In the end, the number of micro-

clusters is equal to the number of main clusters in the 

stream and the micro-clusters indeed represent the 

clusters in the stream. 

When there is no new observation in the stream to be 

processed, Algorithm 3 is executed to calculate the 

number of clusters in the stream. Next, as in EvoStream, 

the starting population of chromosomes is generated and 

the genetic algorithm performs the evolutionary steps to 

gradually improve the starting initial population. The 

pseudocode of the evolutionary function is summarized 

in Algorithm 4. As soon as a new observation arrives, the 

evolutionary steps are stopped and the new observation 

is processed by the online component. This guarantees 

that only idle times are used for evolutionary clustering. 

If a new observation arrives during an evolutionary step, 

the algorithm stops this step before processing the new 

observation. If the number of steps of the genetic 

algorithm is not yet finished, the results will be stored.  
 

Algorithm 1 – Online Component of DynamicEvostream 

 

Require: radius r, decay rate λ, cleanup interval tgap, Population size P 
Initialize: t=0, MicroClusters=∅, C=∅, slowstream = 0 
1: while stream is active do 
2:   read x from stream 
3:   t←t+1  , new ← (x, t, 1)          
4: for each microcluster ∈ MicroClusters do    // microcluster := (c ,t ,ω) 
5:  if dist (microcluster, new) < r   then       
6:    microcluster [c] ← microcluster [c] +h (new[c], microcluster [c]) ·(new[c] − microcluster [c]) 
7:     microcluster [t] ←t 
8:    microcluster [ω] ← microcluster [ω] ·2 − λ (t − microcluster [t]) + 1 

9: if new has not been absorbed by any microcluster ∈ MicroClusters then     
10:   MicroClusters ← MicroClusters ∪ new 
11:  if t mod tgap = 0 then cleanup (·) 
12:  if has a request for clustering  
13:   if slowstream = 0 or (slowstream = 1 and Change_stream_distribution = 1) 
14:    predict_k_and_result (results)     
15:   else return Evolutionary algorithm results       
16: while idle do 
17:  K ← predict_k_and_result (numberofcluster)       
18:  for i ←1, ..., P do 
19:   Ci ← K randomly chosen micro-cluster 
20:  evolution (·)         
21:  slowstream ← 1 
22: Change_stream_distribution ← 0   

 

Algorithm 2 – Cleanup Function 
 

1: function cleanup (·) 

2: for each microcluster ∈ MicroClusters do 

3:  microcluster [ω] ← microcluster [ω] ·2−λ (t− microcluster [t]) 

4:  if microcluster [ω] ≤2−λtgap then 

5:   Remove microcluster from MicroClusters 

6:   Change_stream_distribution ← 1 
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7: Merge all microclusteri microclusterj where dist. (microclusteri, microclusterj) ≤ r  

8: if merge microclusters        

9:   Change_stream_distribution ← 1 
 

Algorithm 3 – Offline Component of Dynamic Evostream 
 

1:  function predict_k_and_result (in) 

2: Arrange the microclusters in descending order based on fitness 

3: for each C ∈ MicroClusters do 

4:  Find the nearest microcluster to C 

5:   if dist (nearest_microcluster, C) < = 2r/3   then       

6:    temp_microclusters ← new (nearest_microcluster, C, dis) 

8: find two microclusters with the shortest distance in temp_microclusters and Merge them 

7:   Repeat lines 2 to 8 as long as there are microclusters closer than the threshold for integration 

8:   K ← size of microclusters 

9: if in = results then macroclusters← microclusters  
 
 

Algorithm 4 – Evolutionary Function 
 

1: function evolution (·) 

2: P1, P2←Select two solutions proportionally to their fitness from population 

3: O1, O2 ←Create offsprings of P1, P2 using binary crossover 

4: for each gi in O1, O2 do_For each child-gene 

5:  if random (0,1) < Pm then 

6:   if gi = 0 then gi ← 2δ 

7:   else gi ←2δ· gi 

8: Add O1, O2 to population and discard the two least fitest solutions 
 

In the next idle time, if the stream distribution has not 

changed, the weights of the micro-clusters are updated 

and then the remaining evolutionary steps are executed. 

However, if the distribution of the stream has changed, the 

previous results are regarded as invalid and the genetic 

algorithm is executed anew with the new micro-clusters. 

In the development of EvoStream, the other existing 

approaches to mutation and recombination were 

examined. However, no significant difference was 

observed between these approaches in the output results 

of the algorithm. Therefore, EvoStream utilizes the same 

operators as those used by GA-clustering. These operators 

have also been used in DynamicEvoStream without any 

modification. 
 

5. Evaluation 

To evaluate DynamicEvoStrean and EvoStream, the 

algorithms were implemented in C++ and tested on a 

desktop computer with Intel Core i7 4510U 2GHz and 

8GB RAM DDR3. 
Initial tests were done with two laboratory samples 

datasets and the final analysis was conducted with the real 

datasets KDDCup’99.4, Covertype, Abalone, and Avila 

(Table 2). For precise evaluation of the accuracy of the 

proposed algorithm, a set of classified data was used in 

which the classes of all data were labeled. Thus, in 

addition to evaluating the criteria for examining the 

validity of the results such as SSQ, we can also check the 

accuracy of the algorithm in assigning the data to the 

correct class. 
The laboratory samples datasets consist of a large number 

of numerical data items which have been labeled by 

researchers. 

The first set is composed of simulated data from the 

sensors of temperature, humidity, and oxygen. The values 

                                                 
1 https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data 

of each sensor were randomly produced in the real range 

of the performance of the sensor. The data were 

normalized and labeled in nine geographical classes 

according to the values. The second set is the simulation 

of a child’s development consisting of the attributes of age, 

height, weight, and head circumference. The values of 

each attribute were randomly produced in the real-world 

ranges and classified into four groups, i.e. normal, 

requiring further monitoring and measurement, warning, 

and requiring medical examination. 

KDDCup’99.4 is a relatively old but still popular data 

stream for testing stream clustering algorithms. It consists 

of 4M records of network traffic data. The data have 42 

features which describe the connection features and the 

connection status. 31 attributes are numerical. The present 

authors have used the first 2,500,000 items for evaluation. 

The dataset is available online1. 

The static dataset Covertype consists of 581,012 items of 

cartographic information used to predict the vegetation of 

forests in the United States. Each item of this dataset has 

10 features including information about the physical 

features of vegetation in forests such as slope, altitude, 

and soil type. The label of each class represents one of 

seven types of forest vegetation. The dataset is available 

online2. 

Abalone is a dataset to estimate the age of an abalone’s 

shell based on physical measurements. To find the age of 

an abalone, one must cut through the cone-shaped shell, 

stain it, and count the number of rings using a microscope, 

which is a tedious and time-consuming task. In this 

dataset, physical attributes such as length, diameter, and 

height which are easier to measure are suggested for 

estimating the age of the shell. The dataset consists of 

4177 items of information about abalones. The data have 

2 https://archive.ics.uci.edu/ml/datasets/Covertype 
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8 features, with 7 of them being numerical and only one 

of them being non-numerical which refers to the sex of 

the snail. As the sex of a snail is equally important in 

determining the age of the shell, this column cannot be 

ignored. Thus, to convert the type of sex to a format which 

could be readable for the algorithm, the researchers added 

one column to the data for each sex and then removed the 

sex column. In other words, one column was added to all 

items for each existing sex (male, female, newborn). For 

each item, the corresponding sex column was set to 1 and 

the other two columns were set to 0. The dataset is 

available online3. 

Avila dataset consists of 20,867 data items. This set 

consists of the data related to 800 images of the Avila 

Bible which is a Latin copy of the Bible dating back to 

12th century Italy and Spain. Graphical analysis of this 

manuscript is indicative of the existence of 12 different 

manuscripts of the book. Each data item has 10 features. 

The aim is to assign each item to one of the 12 

manuscripts. The initial data were normalized using the 

Z-normalization method. The dataset is available online4. 
Unfortunately, none of the four mentioned datasets 

include information about time so that we could perform 

a precise simulation of the speed of data stream and input. 

Therefore, by sending and processing the data items one 

by one, we considered them as a single data stream and, 

just as in EvoStream, modeled the input time of the data 

as a Poisson process with an average input rate of 1 

observation per second. 

Table 2 - Specification of Datasets 

Dataset Name Data Set Characteristics 
Attribute 

Characteristics 

Missing 

Values 

Number of 

instances 

Dimensions (number 

of attributes) 

lab_data_1 Multivariate, Time-Series Laboratory samples no 500,000 3 

lab_data_2 Multivariate, Time-Series Laboratory samples no 500,000 4 

KDDCup '99.4 Multivariate Real N/A 2,500,000 31 

Covertype Multivariate Real No 581,012 10 

Abalone Multivariate Real No 4,177 10 

Avila Multivariate Real N/A 20,867 10 

As significant differences in the variation ranges of the 

data would negatively affect the algorithm, all attributes 

were standardized by subtraction from the mean and 

division by the standard deviation in order to reduce 

differences in the scales of the data. This is referred to as 

data normalization [32]. It should be noted that we 

simulated the real-world speed of streams in evaluating 

EvoStream and DynamicEvoStream on these datasets. 

The evaluations, therefore, took days or even weeks to 

finish. It should be borne in mind that the speed of the 

input stream in other algorithms can be artificially 

increased. In other words, the idle times can be safely 

eliminated without any disruption in the work of these 

algorithms because they do not make use of idle times. 

As in [6], the automatic algorithm configuration package 

called irace [33] was used to find the optimum values of 

radius and tgap in both algorithms. irace examines new 

parameters and removes those which are statistically more 

inefficient. The sampling process acts iteratively towards 

better configurations. The fading rate parameter is 

assumed as λ = 0.001. As in GA-clustering, the 

parameters of the evolutionary algorithm are set as 

population size P=100, mutation rate Pm=0.001, and 

crossover rate Pc=0.8. Researchers in [6] tested several 

scenarios of different values and concluded that the values 

of GA-clustering parameters are the best selections. The 

number of clusters in EvoStream is equal to the total 

number of classes in each stream. It should be noted that 

parameter settings are not self-evident and it is difficult to 

determine these settings for new, unknown data streams. 

 

5.1. Evaluation of the algorithm in terms of 

recognizing the number of clusters 

Real-world data do not have clear-cut boundaries that 

could show where exactly stream distribution is changed. 

                                                 
3 https://archive.ics.uci.edu/ml/datasets/Abalone 

With the aim of evaluation, therefore, both algorithms 

were separately executed four times on each dataset and, 

in each execution, responded to 100 different clustering 

requests at random times. The average results are listed in 

Table 3. 

As can be seen, the results of DynamicEvoStream in 

recognizing the number of clusters are significantly better 

than those of EvoStream. It should be noted that 

determining the value of tgap is of great importance in 

DynamicEvoStream. This parameter specifies the time in 

which the cleanup function, which is responsible for 

merging overlapping clusters and removing outdated 

clusters, is executed. The value of this parameter is set 

according to changes in the stream. If this value is too 

small, the cleanup function runs many times without 

merging or removing any cluster, which unnecessarily 

increases the computational overload while having no 

effect on the results of clustering. If the value is too large, 

the cleanup function is executed over longer time periods. 

As a result, outdated clusters will remain for a longer time 

and may negatively affect clustering in the event of 

clustering requests. At the same time, overlapping clusters 

which must be merged into a single cluster will appear as 

two or more separate clusters in the clustering results.  
To initialize the macro-clusters, EvoStream sets a 

threshold value for the number of micro-clusters. This 

means that if the number of micro-clusters is twice the 

number of clusters in the stream, EvoStream initializes the 

macro-clusters and the macro-clusters will be optimized 

by the genetic algorithm in the following idle times.  
If the radius of the clusters is set as close to real and the 

stream is noiseless enough, the number of micro-clusters 

never reaches the threshold and the algorithm cannot 

perform the clustering. Therefore, the radius is set as 

smaller than the real value so as to ensure that the number 

4 https://archive.ics.uci.edu/ml/datasets/Avila 
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of micro-clusters could reach the threshold. This wastes 

some memory because each real cluster in the stream is 

represented by multiple micro-clusters. However, if the 

radius gets close to the real value and the threshold value 

for the number of micro-clusters is removed, micro-

clusters will be reduced and the final macro-clusters will 

be of higher quality. 

In addition, in heterogeneous streams, execution of 

EvoStream inevitably requires that the number of clusters 

be equal to the maximum number of clusters in the stream. 

For example, in a stream with at most 10 visible clusters, 

the number is set as K=10 and the threshold for the 

initialization of micro-clusters is 2K=20 which will 

remain constant for the entire stream. As a result, in 

intervals in which the clusters are less than 10, each 

cluster is represented by more micro-clusters, thereby 

wasting memory without any significant effect on the 

quality of micro-clusters. 

As increasing micro-clusters will increase computations 

and decrease the speed of the algorithm, 

DynamicEvoStream can increase speed and optimize 

memory usage by eliminating the threshold as well as 

dynamic identification of the number of clusters in the 

stream. By eliminating the threshold value for micro-

clusters in this algorithm, the number of micro-clusters is 

remarkably reduced, which optimizes memory usage 

while maintaining the quality of final macro-clusters. 
Also, dynamic identification of the number of clusters 

causes the algorithm to retain its flexibility and 

adaptability to the stream in times when the number of 

clusters in the stream decreases as well as to produce the 

necessary macro-clusters if needed. As an example, the 

results of the laboratory samples dataset 1 are shown in 

Figure 2. 

As can be seen in Figure 2, EvoStream always detects 

K=9 clusters in the stream which is equal to the number 

of macro-clusters in the memory. As the threshold of the 

number of micro-clusters in the stream is 18 (= 2K), in the 

best case, there are 27 clusters in the memory consisting 

of both micro-clusters and macro-clusters. Existence of 

noise causes the number of micro-clusters in parts of the 

stream to become more than 18. As a result, the number 

of clusters in the memory is usually more than 27. In 

DynamicEvoStream, the number of clusters is recognized 

dynamically. In the best case, the numbers of micro-

clusters and macro-clusters are equal when there is no 

noise and the boundary of clusters is clear. But if there is 

some noise in the stream, the number of micro-clusters in 

the memory increases and, this increase is always less 

than twice the number of macro clusters due to the 

implementation of the cleanup function. In both cases, 

memory consumption in DynamicEvoStream is smaller 

than in EvoStream. 

To evaluate memory consumption with the real datasets, 

the number of micro-clusters and macro-clusters was 

recorded over periods of 2000 seconds. The results show 

that the closer the number of clusters in the stream is to 

the number of clusters set by EvoStream, the closer the 

memory consumption of DynamicEvoStream and 

EvoStream. As the number of recognized clusters in 

DynamicEvoStream falls below the number set in 

EvoStream with a greater difference, the memory 

consumption of DynamicEvoStream becomes lower than 

that of EvoStream. 

 

5.2. Time complexity of DynamicEvoStream 

In this section, we shall examine the time complexity of 

each component of DynamicEvoStream. 

 

5.2.1. Time complexity of the cleanup function 

This function first reduces the weight of each micro-

cluster by use of the fading function. If the weight falls 

below the threshold, it will remove the micro-cluster and 

enable the stream distribution change flag. This operation 

is of the order O(n), where n is the number of micro-

clusters. Next, for each micro-cluster, the function 

examines the other micro-clusters and merges micro-

clusters with more than 50% overlap. In the worst case, 

no two micro-clusters are merged, which is an act of the 

order O(n2). In the best case, all micro-clusters are merged, 

which is an act of the order O(n). 

If the clusters are merged, the stream distribution change 

flag is enabled. In the worst case, the cleanup function is 

of the order O(n2). Given that the number of micro-

clusters in DynamicEvoStream is always less than or (in 

the worst case) equal to the number of micro-clusters in 

EvoStream, the time complexity of the cleanup function 

in DynamicEvoStream is always less than or (in the worst 

case) equal to the time complexity of the cleanup function 

in EvoStream. 

 

5-2-2- Time complexity of the function of recognizing the 

number of clusters 

In this function, the micro-clusters are first sorted by the 

value of their fitness function. Using merge sort, this act 

is of the order O(n.log(n)), where n is the number of 

micro-clusters. Next, for each micro-cluster, the closest 

micro-cluster is found, and they are merged if they fulfill 

the criterion of overlap. In the worst case, no two micro-

clusters are merged, which is an act of the order O(n2). In 

the best case, all micro-clusters are merged, which is an 

act of the order O(n). In the end, the final number of 

micro-clusters is recorded as the number of clusters, 

which is an act of the order of O(1). In the worst case, this 

function is of the order O(n2). 
   5-2-3- Time complexity of the evolutionary algorithm 

EvoStream first sorts the micro-clusters by the values of 

the fitness function and using merge sort, which is an act 

of the order O(n.log(n)); but DynamicEvoStream has 

already sorted the micro-clusters when recognizing the 

number of clusters where n denotes the number of micro-

clusters. As the number of clusters in DynamicEvoStream 

is always less than or (in the worst case) equal to the 

number of micro-clusters in EvoStream, the time 

complexity of sorting in DynamicEvoStream is always 

less than or (in the worst case) equal to EvoStream. 
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Fig. 2. Average memory consumption during 4 executions on the experimental dataset 1(gray vertical lines show the 

approximate range of stream distribution changes) 

Next, the parents are selected according to their fitness 

and their genes are combined. The number of the genes of 

each chromosome is equal to the number of clusters. 

Therefore, the generation of each offspring is of the order 

O(K), where K denotes the number of clusters. The 

number of clusters in DynamicEvoStream is always less 

than or equal to the number of clusters in EvoStream; 

therefore, the time complexity of generating offspring in 

DynamicEvoStream is always less than or (in the worst 

case) equal to EvoStream. 

The time complexity of executing each evolutionary step 

in the genetic algorithm is of the order O(n.log(n)+K) in 

EvoStream and of the order O(K) in DynamicEvoStream. 

It should be noted that the values of n and K in 

DynamicEvoStream are less than or equal to those in 

EvoStream. 

 

5.3. Evaluation of the quality of clusters using 

purity index  

One of the indexes of external evaluation in clustering is 

purity index which refers to the percentage of agreement 

between clustering and actual labels. For this purpose, the 

label assigned to each cluster is compared with the actual 

label of the class which has the most in common with the 

cluster, and the number of points from the cluster which 

are within the correct class is counted. The ratio of this 

number to the total number of points is called the purity 

index. Equation 3 calculates the purity index. 

 

𝑃𝑢𝑟𝑖𝑡𝑦(𝑆. 𝐶) =  
∑ max

𝑛 |𝑆𝑚∩𝐶𝑛|𝑚 

𝑁
                                         (3) 

 

|Sm ∩ Cn| denotes the points in common between the 

cluster Cn and the class Sm, and N denotes the total 

number of points. The maximum value of purity index is 

1, which is reached when the labels resulting from 

clustering for all the possible points in that cluster 

completely conform to the actual labels. Conversely, if 

none of the cluster labels conform to the actual labels, the 

index becomes 0. 

  

Table 3- The average results of clustering the test 

Dataset 
The number of 

executions 

The number of 

requests in each 
execution 

The number of correct responses in 

terms of recognizing the number of 
clusters in DynamicEvoStream 

The number of correct responses in 

terms of recognizing the number of 
clusters in EvoStream 

Test_data_1 4 100 376 224 

Test _data_2 4 100 391 269 

KDDCup '99.4 4 100 400 400 

Covertype 4 100 396 317 

Abalone 4 100 389 244 

Avila 4 100 394 271 

 

Figure 3 illustrates the average results from the 

calculation of purity index in both algorithms on the 

laboratory samples dataset 1. 

During the changes in stream distribution, the clustering 

quality of DynamicEvoStream deteriorates before the 

execution of the cleanup function (starred points) while it 

returns to an acceptable level after the function is executed. 

In parts of the stream where the number of recognized 

clusters is equal to the number of clusters set for 

EvoStream, the clustering quality of the two algorithms is 

quite close to each other. In those parts where the number 
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of clusters is less than the number set for EvoStream, the 

results of EvoStream severely deteriorate and a great 

percentage of the observations are wrongly clustered. It 

should be noted that the quality of clustering real datasets 

confirmed the results of our experiments. In general, the 

results indicate that DynamicEvoStream has a higher 

quality of clustering than EvoStream. 

 

5.4. Limitations 

Notwithstanding the acceptable performance of 

DynamicEvoStream, there still remain several important 

issues: 

1. DynamicEvoStream is not able to recognize 

clusters of arbitrary form. 

2. Radius and gap time are two parameters in 

the cleanup function that directly affect the 

results of DynamicEvoStream. Any error in 

the setting of these parameters can severely 

affect the performance of the algorithm. 

3. If the number of observations belonging to a 

cluster is low and these observations arrive at 

relatively long intervals, DynamicEvoStream 

may spot the cluster as outdated and remove 

it. 

4. In some cases, observations with noise are 

likely to be considered as a single cluster. 

The cleanup function removes this cluster, 

but if clustering is requested before the 

execution of the function, the number of 

clusters will be wrongly recognized. 

 

6. Conclusion and future works 

This paper introduced DynamicEvoStream which is an 

efficient algorithm of stream clustering using the idle 

times of the stream. It is the optimized version of 

EvoStream and can recognize the number of clusters 

dynamically. The results of our experiments indicate that 

DynamicEvoStream outperforms EvoStream. The major 

advantages of DynamicEvoStream over EvoStream are as 

following: 

Recognizing the number of clusters: Recognizing the 

number of clusters is an expert task which requires a deep 

understanding of the stream. Moreover, this is impossible 

in streams with non-uniform distribution. In addition to 

eliminating the risk of expert’s errors in recognizing the 

number of clusters, dynamic recognition of the number of 

clusters allows the algorithm to have a good performance 

for both uniform and non-uniform streams. 

 Increased quality of clustering: 

DynamicEvoStream correctly recognizes the 

number of clusters. In the worst case where 

the boundaries of clusters are too close, the 

number of clusters recognized by 

DynamicEvoStream is more similar to the 

real number of clusters in the stream than is 

the number recognized by EvoStream. It is 

obvious that this will increase the quality of 

clusters. 

 Reduced computation and memory 

requirements: While maintaining the quality 

of clusters, DynamicEvoStream has lower 

requirements and performs less computation 

than EvoStream. In the worst case, 

depending on the dimensions of the data and 

the speed of streams with non-uniform 

distribution, the quality of cluster recognition 

is close to EvoStream while in the average 

case it shows more than 30 percent of 

improvement. This is more obvious in those 

parts of the stream where the input rate of the 

data is high. 

 Increased speed: This algorithm has a higher 

speed than EvoStream due to reduced 

computation and memory requirements, 

elimination of outdated clusters, and merging 

clusters with large amounts of overlap. In 

those parts of the stream where the number of 

real clusters in the stream has the greatest 

difference from the number of clusters set in 

EvoStream, DynamicEvoStream is 

approximately four times as fast as 

EvoStream. 

 

Fig. 3. The average purity index for the experimental dataset 1 
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If instead of merging overlapping clusters, we hold their 

centres in a data structure as the representatives of the 

clusters, clusters of an arbitrary form can also be 

recognized. In the next step, our aim is to improve the 

algorithm in a way that it could recognize any cluster of 

an arbitrary form. A more general research objective in 

the future is to use techniques for identifying irrelevant 

data or noise in order to make the algorithm immune to 

wrong cluster recognition. This can protect the results of 

the algorithm against the excessive influence of the gap 

time parameter (tgap). In the end, we hope to find a method 

for dynamic modification of the radius of clusters to 

improve the performance of the algorithm. 
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