تعداد نشریات | 44 |
تعداد شمارهها | 1,301 |
تعداد مقالات | 15,995 |
تعداد مشاهده مقاله | 52,429,066 |
تعداد دریافت فایل اصل مقاله | 15,174,963 |
شبیهسازی هیدرولیکی سیمینهرود با بهرهگیری از نرمافزارهای HEC-RAS و ArcGIS | ||
هیدروژئومورفولوژی | ||
دوره 9، شماره 30، خرداد 1401، صفحه 103-87 اصل مقاله (1.51 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2022.49185.1613 | ||
نویسندگان | ||
میرعلی محمدی* 1؛ مهسا مهتدی2 | ||
1دانشیار گروه مهندسی عمران- هیدرولیک و مکانیک مهندسی رودخانه، دانشکده فنی و مهندسی، دانشگاه ارومیه. | ||
2دانش آموخته دورة کارشناسی ارشد مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه. | ||
چکیده | ||
رودخانهها یکی از منابع مهم آبهای سطحی هستند که با توجه به نقش مهم آنها در زندگی بشر باید مورد توجه قرار گیرند. هدف این تحقیق، مطالعه ویژگیهای هیدرولیکی سیمینهرود و فرآیندهای حاکم بر آن با استفاده از تلفیق مدل HEC-RAS، در بستر نرمافزار ArcGISاز طریق الحاقیه HEC-GeoRAS بهمنظور شبیهسازی پارامترهای هیدرولیکی آن رودخانه با مساحت حوضهی آبریز 3726 کیلومترمربع میباشد. نظر به اینکه مدلهای چندبعدی نیاز به زمان و هزینهی بالایی دارند، در قوس رودخانه با استفاده از تلفیق تصاویر ماهوارهای و مدل تکبعدی HEC-RAS شبیهسازی چند بعدی انجام پذیرفت. در این میان، 58 مقطع عرضی در مسیر رودخانه در نظر گرفته شده است که دادههای اصلی مورد نیاز در این پژوهش شامل: نقشههای ارتفاعی، تصاویر ماهوارهای، شرایط مرزی و دادههای هیدرومتری سیمینهرود میباشند. نتایج حاصل نشان داد، در بالادست رودخانه مقدار دبی برابر با 3/316 مترمکعب بر ثانیه و تراز سطح آب 85/12 متر و در پایین دست مقادیر دبی جریان و تراز سطح آب به ترتیب 6/313 مترمکعب بر ثانیه و 52/11 متر محاسبه شد. در دو طرف قوس رودخانه نیز تغییرات سطح آب نزدیک به 50 سانتیمتر بوده و سرعت جریان با مقدار فاصله از ساحل رودخانه نسبت مستقیم دارد؛ به طوریکه بیشینه سرعت جریان با مقدار 20/2 متر بر ثانیه در فاصلهی حدود 50/1 متر اتفاق افتاده است. در صحتسنجی مدل، پارامتر آماری NSE در سطح آب و عمق جریان دارای مقادیر به ترتیب 805/0 و 845/0 بدست آمد که دقت بالای مدلسازی را نشان میدهد. این نتایج حاکی از دقت بالای مدل هیدرولیکی HEC-RAS در شبیهسازی هیدرولیک جریان سیمینهرود را دارد. در نتیجه ملاحظه میشود تلفیق نرمافزارهای HEC-RAS و ArcGIS قابلیت بالایی در مدیریت دشت سیلابی داشته و باعث افزایش دقت، سرعت و کاهش هزینههای مطالعاتی مهندسی رودخانه میشود. | ||
کلیدواژهها | ||
هیدرومورفولوژی؛ سیمینهرود؛ شبیهسازی جریان؛ HECRAS؛ ArcGIS | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Alizadeh, A. (2015). Principles of Applied Hydrology, Astan-Quds Razavi Publications Press, Meshad, Iran.
Asadi, F. Z., Fazl Owla, R., & Emadi, A. (2017). Investigation of river bed changes using HEC-RAS4.0 model (Case study: Hall River), J. Watershed Management Research, 8(15): 35-25.
Barzegari, F., & Dasturani, M.T., (2015) Forecasting the suspended load of the river using time series models and artificial neural network (Case study: Kazakh station of GorganRood River, J. Watershed Management Research, 6(12): 225-216.
Benavides, J A., Pietruszewski, B., Kirsch, B., Bedient, P. (2001). Analyzing flood control alternatives for the clear creek watershed in a geographic information systems framework. In Bridging the Gap: Meeting the World Water and Environmental Resources Challenges, pp. 1-10.
Chang, H.H. (1982). Mathematical model for erodible channels. ASCE Journal of Hydraulics Division, 108(5): 678-689.
Cook, A. C. (2008). Comparison of one-dimensional HEC-RAS with two-dimensional FESWMS model in flood inundation mapping. Graduate School of Purdue University, West Lafayette, USA.
Eshghi, P., Farzad Mehr, J., Dasturani, M.T., & Arab Asadi, Z., (2016). Investigation of efficiency of intelligent models in estimating suspended river sediments (case study: Babaman Watershed, North Khorasan), J. Watershed Management Research, 7(14): 88-95.
Gibson, S., Nygaard, C., & Sclafani, P. (2010). Mobile bed modeling of the Cowlitz river using HEC-RAS: Assessing flooding risk and impact due to system sediment. In 2nd Joint Federal Interagency Conference, Vol. 27, Las Vegas, NV, USA.
Haghiabi, A.H. & E. Zaredehdasht. (2012). Evaluation of HEC-RAS ability in erosion and sediment transport forecasting, World Applied Sciences Journal, Vol. 17: 1490-1497.
Hamzehpour, R., & Yasi, M. (2006). Estimating the amount of bed load in rivers with pebble beds, 7th Seminar on River Engineering, Shahid Chamran University, Ahwaz, Iran.
Honarbakhsh., A, Hedayatipour., C, & Samadi., H. (2020). Investigation of the effects of sand harvesting on hydromorphological behavior of river canal case study of dry river Farsan, Quantitative Geomorphology Researches, Vol. 9: 216-214.
Khalfallah, C. B., & Saidi, S. (2018). Spatiotemporal floodplain mapping and prediction using HEC-RAS-GIS tools: Case of the Mejerda river, Tunisia. Journal of African Earth Sciences, 142: 44-51.
Mohammadi, M., (2020). Applied Hydraulics, Urmia University Publications Press, Urmia, Iran.
Mohammadi, M., Mohammadi, F., Fakherifard, A., & Bijanvand, S. (2020). Extraction of flood risk zoning control curve (case study: Baranduz-chay River, Urmia). J. Hydrogeomorphology, University of Tabriz, 6(22): 87-108.
Moludi, M., & Mohammadi, M. (2021). Derivation of rule curve for flood risk zone (case study: Baranduz-chay River). J. Water and Soil Science, University of Tabriz, Iran. doi:10.22034/ws.2021.1225.
Pappenberger, F., Beven, K., Horritt, M., & Blazkova, S. J. J. O. H. (2005). Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J. Hydrology, 302(1-4): 46-69.
Rasuli, A. (1998). Necessity of creating the tendency of geographical information systems in geographical groups of the country; No.166.
Samadian, M., Hessari, B., Mohammadi, M. and Alami, M.T. (2020). Assessment of river training plans using MIKE11 model (a case study: Zarineh River in Shahindezh city conjunction). J. Hydrogeomorphology, University of Tabriz, 7(22): 21-41.
Shayan., S, Sharifi Kia., M, & Naseri, N. (2007). Analysis of morphological factors in spatial-spatial pattern changes of Alvand river; Geographic Research Quarterly, 32nd Year, Issue 1: 36-25.
Sun, M., Quan, H., Lin, Z. (2021). Research on flood disaster simulation of Hongqi river basin based on HEC-RAS, 5th International Symposium on Resource Exploration and Environmental Science, 781(2): 42-51. doi:10.1088/1755-1315/781/2/022017.
Termini, D. (2021). Investigation of a gravel-bed river’s pattern changes: Insights from satellite images. Applied Sciences, 11(5): 1-17. doi:10.3390/app11052103.
Uddin, K., Basanta, S., & Shamsul Alam, M. (2011). Assessment of morphological changes and vulnerability of river bank erosion alongside the river Jamuna using remote sensing. J. Earth Science and Engineering, 1(1): 29-34.
Vaezipour, H.A, & Taleb Bidakhti, N. (2011). Simulation of morphological changes of Sistan river (Hirmand bifurcated distance to Zahak dam).
Winterbottom, S.J. (2000). Medium and short-term channel planform changes on the rivers Tay and Tummel, Scotland, Geomorphology, 34(3-4): 195-208.
Wu, Y., Wang, Y., Yang, Y., Wang, J., Liu, H., & Fu, G. (2020). Flood simulation and disaster loss assessment of flood storage and detention areas based on HEC-RAS. J. Water Resources Research, 9(1): 42-51.
Young, R.A., & Loomis, J. B. (2014). Determining the economic value of water: concepts and methods. Routledge.
Zahiri, J. & Ashnavar, M. (2021). Efficiency of HEC-RAS and GIS in one-dimensional simulation of river hydrodynamics. J. Civil Engineering and Environment, 51(2): 63-72. | ||
آمار تعداد مشاهده مقاله: 587 تعداد دریافت فایل اصل مقاله: 348 |