تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,047 |
تعداد مشاهده مقاله | 52,589,794 |
تعداد دریافت فایل اصل مقاله | 15,268,836 |
برآورد تبخیر-تعرق مرجع در سه اقلیم خشک، نیمه خشک و مرطوب با استفاده از روشهای درخت گرادیان تقویت شده، مدل خطی تعمیم یافته و جنگل تصادفی | ||
دانش آب و خاک | ||
مقاله 1، دوره 33، شماره 3، مهر 1402، صفحه 1-19 اصل مقاله (1.96 M) | ||
شناسه دیجیتال (DOI): 10.22034/ws.2021.49033.2450 | ||
نویسندگان | ||
مجتبی ایزدیار1؛ سجاد هاشمی2؛ سعید صمدیان فرد* 3 | ||
1دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز | ||
2دانشجوی دکتری، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز | ||
3دانشیار، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز | ||
چکیده | ||
تبخیر-تعرق یکی از مولفههای اصلی بیلان آب در کشاورزی و از جمله عوامل موثر و تاثیرگذار جهت برنامه-ریزی دقیق آبیاری است. لذا برآورد دقیق این پارامتر همواره مورد توجه پژوهشگران بوده است. در این راستا و در پژوهش حاضر، توانایی سه روش درخت گرادیان تقویت شده، مدل خطی تعمیم یافته و جنگل تصادفی در برآورد مقدار تبخیر-تعرق گیاه مرجع در سه اقلیم خشک (ایستگاه یزد)، نیمه خشک (ایستگاه بیرجند) و مرطوب (ایستگاه ساری) در بازه زمانی بیست و یک ساله (سال 2000 تا 2020) مورد بررسی قرار گرفت. دقت روشهای مذکور با استفاده از سه معیار ارزیابی ضریب همبستگی، شاخص پراکندگی دادهها و ضریب نش- ساتکلیف مورد بررسی قرار گرفت. نتایج حاصل نشان دادند که در بهینهترین حالت به ترتیب در ایستگاههای بیرجند، یزد و ساری مدل گرادیان تقویت شده با مقدار ضریب نش- ساتکلیف0.804، 0.826 و 0.733، مدل خطی تعمیم یافته با ضرایب 0.892، 0.931 و0.869در نهایت روش جنگل تصادفی با ضرایب 0.954، 0.956 و 0.929 عملکرد مناسبی را در برآورد میزان تبخیر-تعرق مرجع داشتند. از طرفی در تمامی روشها ترکیب داده هفتم با استفاده از پارامترهای هواشناسی دما، رطوبت نسبی، ساعات آفتابی و سرعت باد در هر سه ایستگاه مورد پژوهش بهترین عملکرد را ارائه نمود؛ اما در ایستگاه بیرجند و ساری روش درخت گرادیان تقویت شده و در ایستگاه یزد مدل خطی تعمیم یافته نتایج بهتری را نسبت به دیگر مدلها ارائه کردند و میتوانند در ایستگاههای مورد پژوهش به عنوان روشی با دقت بالا در برآورد تبخیر-تعرق مرجع پیشنهاد گردند. | ||
کلیدواژهها | ||
آبیاری؛ اقلیم خشک؛ اقلیم نیمه خشک؛ تبخیر-تعرق مرجع؛ جنگل تصادفی | ||
مراجع | ||
Allen R, Pereira L, Raes D and Smith M, 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome.
Breiman L, 2001. Random forests. Machine Learning 45:5–32.
Chandler RE and Wheater HS, 2002. Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland. Water Resources Research 38(10): 1-11
Clodoalves da Silva Júniora J, Medeirosa V, Garrozia C, Montenegrob A and Gonçalvesa GE, 2019. Random forest techniques for spatial interpolation of evapotranspiration data from Brazilian’s Northeast. Computers and Electronics in Agriculture 166:105-116.
Feng Y, Cui N, Gong D, Zhang Q and Zhao L, 2017. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management 193:163-173.
Houborg R and McCabe MF, 2018. A hybrid training approach for leaf area index estimation via cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing 135:173–188.
Karimi S, Shiri J And Nazemi AH, 2013. Estimating daily reference crop evapotranspiration using artificial intelligences-based ANFIS and ANN techniques and empirical models. Water and Soil Science. 7:139-158 (In Persian with English abstract).
Karimi S, Shiri J and Martic P, 2020. Supplanting missing climatic inputs in classical and random forest models for estimating reference evapotranspiration in humid coastal areas of Iran. Computers and Electronics in Agriculture 176:168-171.
Mohammadrezapour A, 2017. . Monthly forecast of potential evapotranspiration models using support vector machine (SVM), genetic programming and neural - fuzzy inference system. Journal of Irrigation and Water Engineering 7:135-150 (In Persian with English abstract).
Nourani V And SayahFard M, 2013. Sensitivity analysis of ANN inputs in estimating daily evaporation. Journal of Water and Wastewater 3:88-100 (In Persian with English abstract).
RahimiKhob A and Mahmoudi A, 2011. Estimating actual evapotranspiration in a catchment using artificial neural networks with minimum climatic data. Case study: Emame representative catchment. Iran- Water Resources Research 4:51-61 (In Persian with English abstract).
Saggi MK and Jain S, 2019. Application of fuzzy-genetic and regularization random forest (FG-RRF) estimation of crop evapotranspiration (ETc) for maize and wheat crops. Agricultural Water Management 229:178-192.
Samadianfard S, Hashemi S and Izdyar M, 2019. Estimation of daily evaporation from panevaporation using machine learning methods. Iranian Journal of Irrigation and Drainage 4(12):1004-1015 (In Persian with English abstract).
SamadianFard S And Panahi S, 2019. Estimating daily reference evapotranspiration using data mining methods of support vector regression and M5 model tree. Journal of Watershed Management 8:157-167 (In Persian with English abstract).
Sepehri S, Abbasi F, Zarei G and Nakhjavani Moghaddam MM, 2021. Investigation of artificial neural network based models and sensitivity analysis for reference evapotranspiration estimating. Iranian Journal of Irrigation and Drainage 6:2089-2099 (In Persian with English abstract).
Shadkani S, Abbaspour A SamadianFard S, Hashemi S, Mosavi A and Shamshir Band S, 2020. Comparative study of multilayer perceptron-stochastic gradient descent and gradient boosted trees for predicting daily suspended sediment load: The case study of the Mississippi River, U.S. International Journal of Sediment Research 36:512-523
ZeionlabediniRezaabad M, GHazanfari S and Salajegheh M, 2020. ANFIS modeling with ICA, BBO, TLBO, and IWO optimization algorithms and sensitivity analysis for pridicting daily refrence evapotranspiration. Journal of Hydrologic Engineering 25(8):20-33. | ||
آمار تعداد مشاهده مقاله: 413 تعداد دریافت فایل اصل مقاله: 340 |