تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,953,222 |
تعداد دریافت فایل اصل مقاله | 15,624,105 |
بررسی هیدرو شیمی و کیفیت منابع آب حوضه حاجیلارچای و تعیین منشأ عناصر کمیاب | ||
هیدروژئومورفولوژی | ||
دوره 8، شماره 29، اسفند 1400، صفحه 148-127 اصل مقاله (1.63 M) | ||
نوع مقاله: علمی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2022.48533.1609 | ||
نویسندگان | ||
عطا الله ندیری* 1؛ فاطمه نوین2؛ قدرت برزگری2؛ مهدی اوجاقی3؛ نصیر نوری4 | ||
1دانشگاه تبریز | ||
2گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز | ||
3اداره کل حفاظت محیط زیست استان آذربایجان شرقی | ||
4شرکت زرین داغ آستارکان | ||
چکیده | ||
حوضهی آبریز حاجیلارچای در قسمت غربی شهرستان ورزقان قرار گرفته است. قرارگیری کارخانهی استحصال طلای شرکت زرین داغ آستارکان در محدودهی این حوضه پتانسیل آلودگی منابع آبی منطقه را افزایش میدهد. بهمنظور بررسی منابع آبی حوضهی حاجیلارچای تعداد 12 نمونه از آبهای سطحی و زیرزمینی در اسفندماه 1399 جمعآوری گردید و مورد تجزیه شیمیایی قرار گرفت. نتایج تجزیه شیمیایی نشان داد غلظت برخی از عناصر همچون کبالت، سرب و آرسنیک در برخی از موقعیتها بالاتر از حد مجاز برای آشامیدن است. بررسیا حاکی از این است که منشأ این عناصر مرتبط با سازندهای منطقه و در اثر فرایندهای زمینزاد میباشد. هدف این تحقیق ارزیابی ویژگیهای هیدرو شیمیایی منابع آبی با استفاده از روشهای ترسیمی و بررسی و تعیین منشأ عناصر کمیاب به کمک روشهای آماری چندمتغیره مانند تحلیل عاملی و تحلیل خوشهای میباشد. بر اساس نتایج بهدستآمده از روشهای ترسیمی، بیشتر نمونههای آبی منشأ آهکی داشته و تیپ غالب بیکربنات کلسیم را دارا میباشند. نتایج حاصل از تحلیل عاملی نشانگر تأثیر 4 گروه عاملی بر کیفیت منابع آبی حوضهی حاجیلارچای است. عاملهای اول، سوم و چهارم نشاندهندهی تأثیر سازندها بر منابع آبی و فرآیندهای زمینزاد هستند. عامل دوم از فعالیتهای انسانی ناشی میشود. همچنین تحلیل خوشهای، دادهها را به سه دسته تقسیم کرد. دادههای دستهی اول دارای روند ژئوشیمیایی مشابه و عناصر کمیاب پایینی هستند. در دسته دوم تعادل هیدرو شیمیایی برقرار نمیباشد که بهاحتمال زیاد به دلیل تأثیر فعالیتهای کارخانه میباشد. در دستهی سوم غلظت عنصر آرسنیک بالا است که از سازندهای منطقه منشأ گرفته است. | ||
کلیدواژهها | ||
هیدرو شیمی؛ آمار چندمتغیره؛ عناصر کمیاب؛ حوضهی حاجیلارچای؛ شمال غرب ایران | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Adler R. Rascher J. (2007). A Strategy for the Management of Acid Mine Drainage from Gold Mines in Gauteng. CSIR: Pretoria, South Africa. Andriani, P. (2016). Petrology and petrography of intrusive masses of Andrian gold deposit, West Varzeqan, East Azerbaijan, M.Sc. Thesis, Payamnoor Shabestar University. Al-Garni S. (2005). Biosorption of lead by gram-ve capsulated and non-capsulated bacteria. Water SA 1(3): 345-349 Ameh, E.G. & Akpah, F.A. (2011). Heavy metal pollution indexing and multivariate statistical evaluation of hydrogeochemistry of River PovPov in Itakpe Iron- ore mining area, Kogi State, Nigeria. Advancees in Applied Science Research 2(1): 33-46. Asghari Moghaddam A. (2010). Principles of Groundwater Recognition, Tabriz University Press, pp 349 Asghari Moghaddam, A., Nadiri, A.A. & Sadeghi-Aghdam, F. (2018). Investigation of hydrochemical properties of groundwater in Naqadeh plain aquifer and heavy metal pollution index (HPI), Earth Sciences 29 (15): pp. 110-97. Asgharai Moghaddam A. Nadiri A. & Sadeghi Aghdam F. (2020). Investigation of hydrogeochemical characteristics of groundwater of Naqadeh plain aquifer and heavy metal pollution index (HPI). Journal of Geoscience, 29(115), 97-110. doi: 10.22071/gsj.2018.127310.1464 Asghari Saraskanrood S. Dolatshahi Z. & Pourahmad M. (2016). The effect of heavy elements on the quality of extracted water in Khorramabad using standards (National, World Health Organization and EPA). Journal of Hydro geomorphology, 3 (9), 21-41. CCME (Canadian Council of Ministers of the Environment). (1991). Interim Canadian environmental quality criteria for contaminated sites. CCME, Winnipeg. Davis N.S. & Dewiest, R.J.M. (1966). Hydrogeology. John Wiley and Sons. Inc, U.S.A. 463 pp. Duffus, J.H. (2002). Heavy metals-a meaningless term?. Pure and Applied Chemistry 74(5): 793-807 Dzombak, DA., Ghosh, R.S., Wong-Chong GM. (2016). Cyanide in water and soil: chemistry risk and management. Taylor & Francis Group, Boca Raton Emberger, L. (1930). La vegetation de la region mediterraneenne. Essai d’une classification des groupments vegetaux. Rev. Gen. Bot 42: 641- 662,705-721. Esmaeili, S., Asghari Moghaddam, A,. Barzegar, R. & Tziritis, E. (2017). Multivariate statistics and hydrogeochemical modeling for source identification of major elements and heavy metals in the groundwater of Qareh-Ziaeddin plain, NW Iran. Arabian, Journal of Geosciences 11:5. He J. & Charlet L. (2013). A review of arsenic presence in China drinking water, Journal of Hydrology 49(2): 79-88. Hounslow A W. (1995). Water quality data: analysis and interpretation: Lewis publishers. Iranian Institute of Standards and Industrial Research. (2011). Drinking water and national standard No. 1053. Physical and chemical properties, fifth revision. Jaszczak, E., Polkowska, Z., Narkowicz, S. & Namiesnik (2017). Cyanudes in the environment Analysis problems and challenges. Environ Sci Pollut Res, 24: 15929-15948. Johnson, Craig. A. (2015). The fate of cyanide in leach wastes at gold mines: An environmental perspective, Applied Geochemistry, 57: 194-205. Jones DA. (1998). Why are so many food plants are cyanogenic? Phytochemistry 47:155–162 Karlsson HL Botz M. (2004). Ammonia nitrous oxide and hydrogen cyanide emissions from five passenger vehicles, Sci Total Environ 334-335:125–132 Lottermoser, B. (2007). Mine Wastes: Characterization. Treatment and Environmental Impacts: New York, NY, USA, 2007: pp. 1-290. Nabavi, M. H., (1976), Introduction to Geology of Iran, Geological Survey of Iran; pp. 107 Nadiri A.A. Asghari Moghadam A. Sadeghi Aghdam F. & Aghaei H. (2012). Investigation of arsenic anomalies in water resources of Sahand Dam, Environmental Studies 38 (3): pp. 61-7. Nadiri, A.A., Sadeghi, Aghdam, F., Asghari Moghadam, A. & Naderi, K. (2015). Evaluation of salinity and arsenic as destructive factors of surface and groundwater quality in Sahand dam catchment, Journal of Hydro geomorphology 2 (4), 79-99. Nadiri, A.A, Sadeghi Aghdam, F., Khatibi, R. & Asghari Moghaddam, A. (2018). The problem of identifying arsenic anomalies in the basin of Sahand dam through risk-based ‘soft modelling, Science of the Total Environment 613–614: 693–706. National Standard of Iran (2009). Drinking Water, Physical and Chemical Properties, Iranian Institute of Standards and Industrial Research, Standard No. 1053, Revised 5. Omotola Fashola, M., Mpode Ngole-Jeme V. & Oluranti Babalola O. (2016). Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance, International Journal of Environmental Research and Public Health 13(11): 1047. Osman, A. Abdalla E. Suliman F.O. Al-Ajmi H. Al-Hosni T. & Rollinson H. (2009). Cyanide frome mining and its effect on groundwater in aride areas, Yanqul mine of Oman. Sci Environ Earth 60:885_892. Petrova Simenova, F. & Fishbein, L. (2004). Hydrogen cyanide and cyanides: human health aspects. WHO, Geneva Razzag, S. Nadiri, A.A. Sadeghfam, S. (2020). An investigation of contaminants origins in natural water resources (Ahar plan, NW Iran). International Scientific and Vocational Studies Congress- Engineering (BILMES EN 2020). 35-47. Reimann C. Banks D. & Caritat P. (2000). Impacts of airborne contamination on regional soil and water quality: the Kola Peninsula, Russia, Environmental Science & Technology, 34: 2727-2732. Pourranjbari, Kh. (2015). Study on the geochemical propertiesof surface water and groundwater of Cu-Mo porphyry Haftcheshmeh ore (Varzeghan-East Azarbaijan), Master Thesis, University of Tabriz. Scheneider, J., Bürger, V., Arnold F. (1997). Methyl cyanide and hydrogen cyanide measurements in the lower stratosphere: implications for methyl cyanide sources and skins, Journal of Geophys Res 102:25501–22506
WHO. (2017). Guidelines for drinking water quality, World Health Organization.
| ||
آمار تعداد مشاهده مقاله: 549 تعداد دریافت فایل اصل مقاله: 333 |