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Abstract

In this work, we investigate soliton solutions of the generalized variable coefficients nonlinear Schrödinger equation.
The Jacobi elliptic ansatz method is applied to obtain the optical soliton solutions. The necessary conditions that

warrant the presence of these solutions are determined. We consider the Lie symmetry analysis of governing

equation. Also, the stability of this equation is analyzed by the modulation instability.
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1. Introduction

The Rogue waves are unusual high-amplitude phenomenons that are characterized by so-called extreme values
statical dispersion. The optical rogue waves were firstly studied by Solli and his friends [22]. They have indicated ”the
large probability of encountering an extremely great rogue wave in the open ocean” [14, 16, 22, 23]. Following these
studies, optical rogue waves have been studied extensively in various fields; one-dimensional optical systems, photonic
crystal fibers, hydrodynamics, acoustic, finance [3, 5, 13, 17–19, 21, 27, 31].

We study the properties of solitons in nonlinear optic which can be described by the following variable-coefficients
NLS equation (vcNLSE) [17].

i
∂q

∂x
+ iα(x)

∂q

∂t
+ β(x)

∂2q

∂t2
+ γ(x) |q|2 q = 0, (1.1)

where q(x, t)is the temporal envelope of solitons. α(x), β(x) represent different GVD (group velocity dispersion)
coefficients and γ(x) represent nonlinearity coefficients [17].

Our aim is to investigate the new solitary wave solutions to the vcNLSE by using the modified Jacobi elliptic
functions. In section 3, we perform Lie symmetry analysis for vcNLSE [10]-[32]. Finally, in section 4, we consider the
phenomenon of modulation instability.

2. Soliton Solutions

To solve Eq.(1.1) by the modified Jacobi elliptic functions, the initial assumption is

q(x, t) = P (x, t)eiφ(x,t), (2.1)

where

φ(x, t) = −κx+ ωt+ θ. (2.2)
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In Eq. (2.2), κ is the frequency, ω is the wave number and θ is the phase constant of soliton, [1, 2, 6–8, 11, 12, 24–
26, 29, 30].

We replace (2.1) by (1.1), real and imaginary parts are as follows, respectively,

κP − ωαP + β
∂2P

∂t2
− ω2βP + γP 3 = 0, (2.3)

and
∂P

∂x
+ α

∂P

∂t
+ 2ωβ

∂P

∂t
= 0. (2.4)

The imaginary part yields

v =
1

α+ 2ωβ
, (2.5)

and where α+ 2ωβ 6= 0. From the real part of Eq. (2.3), we obtain the following soliton solutions.

2.1. Rogue Dark-Soliton Solutions of vcNLSE. We suppose that P as follows

P (x, t) = µ0 + µ1sn
p1(ξ, l) (2.6)

with

ξ = B1(x− vt), (2.7)

where B1 is the inverse width of soliton and l is the modulus. By substituting Eq. (2.6) into Eq. (2.3), we get

βµ1B
2
1v

2p1{(p1 − 1)snp1−2 + (p1 − 2)(l2 + 1)snp1 + (p1 + 1)l2snp1+2}
+ γµ3

0 + (κ− ωα− ω2β)µ0 + (3γµ2
0µ1 + (κ− ωα− ω2β)µ1)snp1

3γµ0µ
2
1sn

2p1 + γµ3
1sn

3p1 = 0. (2.8)

From this place, equating of the coefficients of sn (p1 + 2, 3p1) leads to

p1 = 1. (2.9)

So, the coefficients snpi+j equal to zero, we obtain

ω =
−α±

√
α2 + 4β(κ+ γµ2

0)

2β
, (2.10)

and

B1 =

√
−γ
2β

µ1

vl
. (2.11)

So, we get

q(x, t) = (µ0 + µ1sn
p1(ξ, l))eiφ(x,t). (2.12)

In the case of l→ 1, the dark optical solitary wave of the vcNLSE is given

q(x, t) = (µ0 + µ1 tanh[B1(x− vt), l])eiφ(x,t), (2.13)

where

B1 =

√
− γ

2β

µ1

v
. (2.14)

The solitary waves will exist provided γβ < 0.
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Figure 1. The rogue-dark solution of |q(x, t)|2 with α = 2, β = 5, γ = −0.1, A0 = 0.1, A1 = 0.5

Figure 2. The contour plot of rogue-dark solution

2.2. Rogue Bright-Soliton Solutions of vcNLSE. Another modified Jacobi elliptic function solution is

P (x, t) = µ0 + µ2cn
p2(ξ, l), (2.15)

with

ξ = B2(x− vt). (2.16)

Similarly, if Eq. (2.15) is taken into account in Eq. (2.3)

βµ2B
2
2v

2p2{−(p2 − 1)(l2 − 1)cnp2−2 − (p2 + 1)l2cnp2+2 + p2(2l2 − 1)cnp2}

+γµ3
0 + (κ− ωα− ω2β)µ0 + (3γµ2

0µ2 + (κ− ωα− ω2β)µ2)cnp2 (2.17)

3γµ0µ
2
2cn

2p2 + γµ3
2cn

3p2 = 0,

and here

p2 = 1. (2.18)

By operations similar to case 1, w and b are obtained as following

ω =
−α±

√
α2 + 4β(κ+ γµ2

0)

2β
, (2.19)
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Figure 3. The rogue-bright solution of |q(x, t)|2 with α = 2, β = 5, γ = −0.1, A0 = 0.1, A1 = 0.5

Figure 4. The contour plot of rogue-bright solution

and

B2 =

√
γ

2β

µ2

vl
. (2.20)

Under these conditions, we get

q(x, t) = (µ0 + µ2cn
p2(ξ, l))eiφ(x,t). (2.21)

In case of l→ 1, the bright optical soliton is given

q(x, t) = (µ0 + µ2 sech[B2(x− vt), l])eiφ(x,t), (2.22)

where

B2 =

√
γ

2β

µ2

v
. (2.23)

Here, the necessary condition for soliton presence is γβ > 0.
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Figure 5. The Rogue wave solutions given by Eq. (2.27) with α = 0.1, β = 1, ω = 0.5, a1 = 1, 5, b0 =

1, γ = 0.5xe(−0.1x2).

2.3. Rogue Wave Solution of vcNLSE. Considering the exp-function approach, we present a transformation such
that

q(x, t) = U(η)eiϕ, η = x− vt, ϕ = −κx− wt+ θ (2.24)

[6, 10–12, 29, 33]. The reduced equation is as follows

(κ− wx− w2β)U + βv2U ′′ + γU3 = 0. (2.25)

The solution form of Eq. (2.25) is

U(η) =
a−1e

−η + a0 + a1e
η

b−1e−η + b0 + b1eη
, (2.26)

q(x, t) =

(
8βa1b0e

η

(α+ 2βw)2γa2
1 + 8βb20e

2η

)
eiϕ. (2.27)

We replace Eq. (2.26) by Eq. (2.25), and from the coefficients of exp(η), we have the exact solution of the governing

Figure 6. The Rogue wave solutions given by Eq. (2.27) with α = 0.01, β = 0.5, ω = 0.5, a1 =

0, 5, b0 = 1, γ = 5x2ex
2

.

model

a0 = 0, a2 = 0, b1 = 0, b2 =
γa2

1

8v2βb0
, v =

1

α+ 2βw
.
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3. Lie Symmetry Analysis

For the complex-valued function, the division into real and imaginary parts yield as

q(x, t) = u(x, t)eiυ(x,t) (3.1)

[33]-[35]. So, Eq. (1.1) decompose into the following system of equations

uυx = γu3 − αuυt − βuv2
t + βutt, (3.2)

ux = −αut − 2βutυt − βuvtt.
Considering the Lie group of point transformations

x∗ = x+ εσ1(x, t, u, v) +O(ε2),

t∗ = t+ εσ2(x, t, u, v) +O(ε2),

u∗ = u+ εη1(x, t, u, v) +O(ε2), (3.3)

v∗ = v + εη2(x, t, u, v) +O(ε2),

where ε << 1[28]-[9].
The vector field of group transformations is follows

Γ = σ1(x, t, u, v)
∂

∂x
+ σ2(x, t, u, v)

∂

∂t
+ η1(x, t, u, v)

∂

∂u
+ η2(x, t, u, v)

∂

∂υ
. (3.4)

Admits the following infinitesimals

σ1(x, t, u, v) = 2C2x+ C5,

σ2(x, t, u, v) = 2C1βx+ C2αx+ C2t+ C4,

η1(x, t, u, v) = −C2u, (3.5)

η2(x, t, u, v) = −C1αx+ C1t+ C3,

where C1, C2, C3, C4 and C5 are arbitrary constants. The Lie point symmetries of Eq. (1.1) is generated by five vector
fields

V1 = 2βx
∂

∂t
+ (−αx+ t)

∂

∂x
,

V2 = −u ∂

∂u
+ 2x

∂

∂x
+ (αx+ t)

∂

∂t
,

V3 =
∂

∂υ
, (3.6)

V4 =
∂

∂t
,

V5 =
∂

∂x
.

4. Modulation Instability

Here, we explored modulation instability of Eq. (1.1). The modulation instability is considered to accent the
importance of the inter plays between the dispersive and nonlinear effects that can occur in the anomalous dispersion
of optical fibers. The Eq. (1.1) has the steady state solution

q(x, t) =
√
P0e

iφNL , (4.1)

where P0 is the optical power. φNL is the nonlinear phase shift induced by the Self-phase modulation (SPM) [2]. So,
we consider the development of perturbation with Eq. (4.1)

q(x, t) = (
√
P0 + Ψ(x, t))eiφNL . (4.2)
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Substituting Eq. (4.2) into Eq. (1.1) and linearizing Ψ(x, t), we obtain the following equation

i
∂Ψ

∂x
+ iα

∂Ψ

∂t
+ β

∂2Ψ

∂t2
− γP0(

√
P0 + Ψ) + γ(P0 + Ψ)3 = 0, (4.3)

and considering the solution of Eq. (4.3) in the form

Ψ(x, t) = Ψ1(x, t)eiλ + Ψ2(x, t)e−iλ, (4.4)

where λ = Wx−Kt. W and K are the wave number and the frequency of perturbation, respectively. From Eq. (4.3)
and Eq. (4.4), acquire two homogeneous equation for Ψ1 and Ψ2. So

W = αK ± βK2 ± (−2P0γ). (4.5)

Figure 7. The relationship between frequency K and wave numbers W.

In case of the normal GVD (Group Velocity Dispersion), the wave number W is real for all K and the steady
state is stable. On the contrary, in case of the anomalous GVD, W becomes imaginary for K. So the continous wave
solution Eq.(4.1) is unstable by anomalous of GVD and this unstable is called modulation stability.

5. Conclusion

To conclude, the modified Jacobi elliptic functions are used to the exact solutions of generalized variable coefficients
NLS equation and obtained the new dark- bright optical solitons. We have also found the Rogue wave solutions by
using exp-function approach. The mentioned cases of rogue-dark and rogue-bright optical solitons Eq. (2.13) and Eq.
(2.22) are shown in Figures 1-4. For the cases to the Rogue wave solutions (2.27) are presented in Figures 5-6. We
have considered the vcNLSE by using the Lie symmetry analysis. Moreover, we wanted to demonstrate the modulation
instability of the vcNLSE. In Figure 7, we give the relation between K frequency and W wave numbers of Eq. (4.5)

for different values of α, β, P0 and γ = 0.5xe−0.1x2

.
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