- [1] S. S. Afzal, M. Younis, and S. T. R.Rizvi, Optical dark and dark-singular solitons with anti-cubic nonlinearity, Optik, 147 (2017), 27-31.
- [2] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, USA, 2007.
- [3] S. Ali, M. Younis, M. O. Ahmad, and S. T. R. Rizvi, Rogue wave solutions in nonlinear optics with coupled Schr¨odinger equations, Optical and Quantum Electronics, 50 (2018), 266.
DOI.10.1007/s11082-018-1526-9.
- [4] M. M. Alipour, G. Domairy, and A. G. Dovadi, An Application of Exp-Function Method to Approximate General and Explicit Solutions for Nonlinear Schr¨odinger Equations, Numerical Methods for Partial Differential Equations, 27 (2011), 1016-1025.
- [5] A. Ankiewicz and N. Akhmediev, Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions, Nonlinear Dyn., 91 (2018), 1931-1938.
- [6] E. C. Aslan and M. Inc, Soliton Solutions of NLSE with Quadratic-Cubic Nonlinearity and Stability Analysis, Waves in Random and Complex Media, 27 (2017), 594-601.
- [7] E. C. Aslan, M. Inc, and D. Baleanu, Optical solitons and stability analysis of the NLSE with anti-cubic nonlin- earity, Superlattices and Microstructures, 109 (2017), 784-793.
- [8] M. Asma, W. A. M. Othman, B. R. Wong, and A. Biswas, Optical Soliton Perturbation with Quadratic-Cubic Nonlinearity by Semi-Inverse Variational Principle, Proceedings of The Romanian Academy, Series A, 18 (2017), 331-336.
- [9] A. Bansal, A. Biswas, Q. Zhou, and M. M. Babatin, Lie symmetry analysis for cubic–quartic nonlinear Schr¨odinger’s equation, Optik, 169 (2018), 12-15.
- [10] A. Bansal, A. H. Kara, A. Biswas, S. P. Moshokoa, and M. Belic, Optical soliton perturbation, group invariants and conservation laws of perturb e d Fokas–Lenells equation, Chaos, Solitons and Fractals, 114 (2018), 275-280.
- [11] A. Biswas, M. Ekici, A. Sonmezo˘glu, and M. R. Belic, Optical solitons in birefringent fibers having anti-cubic nonlinearity with extended trial function, Optik, 185 (2019), 456-463.
- [12] A. Biswas, Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by traveling wave hy- pothesis, Optik, 171 (2018), 217-220.
- [13] M. Dehghan, J. Manafian, and H. A Saadatmandi, Application of semi-analytic methods for theFitzhugh–Nagumo equation, which modelsthe transmission of nerve impulses, Math. Methods Appl. Sci., 33 (2010), 1384–1398.
- [14] H. I. A. Gawad, M. Tantawy, and R. E. A. Elkhair, On the extension of solutions of the real to complex KdV equation and a mechanism for the construction of rogue waves, Waves in Random and Complex Media, 26 (2016), 397-406.
- [15] K. Hosseini, J. Manafian, F. Samadani, M. Foroutan, M. Mirzazadeh, and Q. Zhou, Resonant optical solitons with perturbation terms andfractional temporal evolution using improved tan(ϕ(η)/2)-expansion method and exp function approach, Optik, 158 (2018), 933-939.
- [16] S. L. Jia, Y. T. Gao, C. Zhao, J. W. Yang, and Y. J. Feng, Breathers and rogue waves for an eighth-order variable-coefficient nonlinear Schr¨odinger equation in an ocean or optical fiber Waves, Random and Complex Media, 27(2017), 544–561.
- [17] B. Q. Li and Y. L. Man, Rogue waves for the optics fiber system with variable coefficients, Optik, 158 (2018), 177-187.
- [18] J. Manafian, Optical soliton solutions for Schr¨odinger type nonlinear evolution equations by the tan(ϕ/2)- expansion method, Optik-Int. J. Elec. Opt., 127 (2016), 4222-4245.
- [19] J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitze ica type nonlinear evolution equations arising in nonlinear optics, Opt. Quantum Electron., 48 (2016), 1-32.
- [20] J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, The Eur. Phys. J. Plus, 130 (2015), 1-20.
- [21] C. Y. Qin, S. F. Tian, X. B. Wang, T. T. Zhang, and J. Li, Rogue waves, bright–dark solitons and traveling wave solutions of the (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation, Computers and Mathematics with Applications, 75 (2018), 4221-4231.
- [22] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Optical rogue waves, Nature, 450 (2007), 1054-1057.
- [23] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Active control of rogue waves for simulated super continuum generation, Phys. Rev. Lett., 101 (2008), 275–278.
- [24] K. U. Tariq and M. Younis, Bright, dark and other optical solitons with second order spatiotemporal dispersion, Optik, 142 (2017), 446-450.
- [25] K. U.Tariq, M. Younis, and S. T. R. Rizvi, Optical solitons in monomode fibers with higher order nonlinear Schr¨odinger equation, Optik, 154 (2018), 360-371.
- [26] F. Tchier, E. Cavlak Aslan, and M. Inc, Optical solitons for cascased system: Jacobi elliptic functions, J. Modern Optics, 63 (2016), 2298-2307.
- [27] Y. Yang, X. Wang, and Z. Yan, Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schr¨odinger equation with varying higher-order even and odd terms, Nonlinear Dyn., 81 (2015), 833-842.
- [28] Z. Yang and A. F. Cheviakov, Some relations between symmetries of nonlocally related systems, Journal of Math- ematical Physics, 55 (2014), 083514.
- [29] M. Younis, U.Younas, S. Rehman, M. Bilal, and A. Waheed, Optical bright–dark and Gaussian soliton with third order dispersion, Optik, 134 (2017), 233-238.
- [30] M. Younis, S. Ali, and S. A. Mahmood, Solitons for compound KdV–Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn, 81 (2015), 1191–1196.
- [31] X. Zhang and Y. Chen, Deformation rogue wave to the (2+1)-dimensional KdV equation, Nonlinear Dyn., 90(2017), 755-763.
- [32] Z. Ku¨c¸u¨karslan Yu¨zba¸sı E. Cavlak Aslan, M. Inc, and D. Baleanu, On Exact Solutions for New Coupled Non- Linear Models Getting Evolution of Curves in Galilean Space, Thermal Science, 23 (2019), 227-233.
- [33] Z. Ku¨¸cu¨karslan Yu¨zba¸sı E. Cavlak Aslan, and M. Inc, Lie Symmetry Analysis and Exact Solutions of Tzitzeica Surfaces PDE in Galilean Space, Journal of Advanced Physics, 7 (2018), 88-91.
- [34] Z. Ku¨¸cu¨karslan Yu¨zba¸sı E. Cavlak Aslan, and M. Inc, Exact Solutions with Lie Symmetry Analysis for Nano-Ionic Currents along Microtubules, ITM Web of Conferences, 22 (2018), 01017.
- [35] Z. Ku¨c¸u¨karslan Yu¨zba¸sı E. Cavlak Aslan, D. Baleanu, and M. Inc, Evolution of Plane Curves via Lie Symmetry Analysis in the Galilean Plane. Numerical Solutions of Realistic Nonlinear Phenomena, Springer International Publishing, Switzerland, Chapter 12, 2020. DOI: 10.1007/978-3-030-37141-8.
|