- [1] M. Abdou, A. Badr, and M. Soliman, On a method for solving a two-dimensional nonlinear integral equation of the second kind, J. comput. appl. math., 235 (2011), 3589–3598.
- [2] R. P. Agarwal, N. Hussain, and M. A. Taoudi, Fixed point theorems in ordered banach spaces and applications to nonlinear integral equations, Abst. Appl. Anal., volume 2012, Hindawi Publishing Corporation, 2012.
- [3] A. Altu¨rk, The regularization-homotopy method for the two-dimensional fredholm integral equations of the first kind, Math. Comput. Appl., 21 (2016), P 9.
- [4] K. E. Atkinson, The numerical solution of a nonlinear boundary integral equation on smooth surfaces, IMA J. Numer. Anal., 14 (1994), 461–483.
- [5] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.
- [6] K. E. Atkinson and G. Chandler, BIE methods for solving Laplace’s equation with nonlinear boundary conditions: The smooth boundary case, Math. Comp., 55 (1990), 455–472.
- [7] K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, Springer Science+ Business Media LLC, NewYork, 2007.
- [8] K. Atkinson and F. A. Potra, Projection and iterated projection methods for nonlinear integral equations, SIAM J. Numer. Anal., 24 (1987), 1352–1373.
- [9] I. Aziz, F. Khan, and et al., A new method based on haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math., 272 (2014), 70–80.
- [10] E. Babolian, S. Bazm, and P. Lima, Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1164–1175.
- [11] S. Bazm and A. Hosseini, Bernoulli operational matrix method for the numerical solution of nonlinear two- dimensional VolterraFredholm integral equations of Hammerstein type, Comput. Appl. Math., 39 (2020), p 49.
- [12] A. M. Bica, M. Curila, and S. Curila, About a numerical method of successive interpolations for functional Hammerstein integral equations, J. Comput. Appl. Math., 236 (2012), 2005–2024.
- [13] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, volume 15, Cambridge University Press, 2004.
- [14] L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.
- [15] S. Fazeli, G. Hojjati, and H. Kheiri, A piecewise approximation for linear two-dimensional volterra integral equa- tion by chebyshev polynomials, Int. J. Nonlinear Sci., 16 (2013), 255–261.
- [16] H. Guoqiang and W. Jiong, Extrapolation of nystr¨om solution for two-dimensional nonlinear fredholm integral equations, J. Comput. Appl. Math., 134 (2001), 259–268.
- [17] G. Han and R. Wang, Richardson extrapolation of iterated discrete galerkin solution for two-dimensional fredholm integral equations, J. Comput. Appl. Math., 139 (2002), 49–63.
- [18] R. J. Hanson and J. L. Phillips, Numerical solution of two-dimensional integral equations using linear elements, SIAM J. Numer. Anal., 15 (1978), 113–121.
- [19] S. A. Hosseini, S. Shahmorad, and A. Tari, Existence of an Lp-solution for two dimensional integral equations of the Hammerstein type, Bull. Iran. Math. Soc., 40 (2014), 851–862.
- [20] A. Jafarian and S. M. Nia, Utilizing feed-back neural network approach for solving linear fredholm integral equations system, Appl. Math. Model., 37 (2013), 5027–5038.
- [21] A. Jerri, Introduction to integral equations with applications, John Wiley & Sons, 1999.
- [22] M. Kazemi and R. Ezzati, Existence of solution for some nonlinear two-dimensional volterra integral equations via measures of noncompactness, Appl. Math. Comput., 275 (2016), 165–171.
- [23] M. Kazemi and R. Ezzati, Existence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn’s Fixed Point Theorem, Int. J. Nonlinear Anal. Appl., 9 (2018), 1–12.
- [24] M. Kazemi, H. M. Golshan, R. Ezzati, and M. Sadatrasoul, New approach to solve two-dimensional Fredholm integral equations, J. Comput. Appl. Math., 354 (2019 ), 66–79.
- [25] M. Kazemi, V. Torkashvand, and R. Ezzati, On a method based on Bernstein operators for 2D nonlinear Fredholm- Hammerstein integral equations, U.P.B. Sci. Bull., Series A, 83 (2021), 178–198.
- [26] A. Khajehnasiri, Numerical solution of nonlinear 2D VolterraFredholm integro-differential equations by two- dimensional triangular function, Int. J. Appl. Comput. Math., 2 (2016), 575–591.
- [27] B. H. Lichae, J. Biazar, and Z. Ayati, A class of RungeKutta methods for nonlinear Volterra integral equations of the second kind with singular kernels, Adv. Differ. Equ., 349 (2018).
- [28] K. Maleknejad, N. Aghazadeh, and M. Rabbani, Numerical solution of second kind fredholm integral equations system by using a taylor-series expansion method, Appl. Math. Comput., 175 (2006), 1229–1234.
- [29] K. Maleknejad, S. Sohrabi, and B. Baranji, Application of 2D-BPFs to nonlinear integral equations, Commun. Nonlinea.r Sci. Numer. Simul., 15 (2010), 527–535.
- [30] K. Maleknejad and P. Torabi, Application of fixed point method for solving nonlinear Volterra-Hammerstein integral equation, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 74 (2012), 45–56.
- [31] S. McKee, T. Tang, and T. Diogo, An Euler-type method for two-dimensional volterra integral equations of the first kind, J. Inst. Math. Its Appl., 20 (2000), 423–440.
- [32] F. Mirzaee and S. Alipour, Solving two-dimensional non-linear quadratic integral equations of fractional order via Operational matrix method, Multidiscipl. Model. Mater. Struct., 15 (2019), 1136–1151.
- [33] S. Najafalizadeh and R. Ezzati, A block pulse operational matrix method for solving two-dimensional nonlinear integro-differential equations of fractional order, J. Comput. Appl. Math., 326 (2017), 159–170.
- [34] B. G. Pachpatte, Multidimensional integral equations and inequalities, Springer Science & Business Media, 2011.
- [35] A. G. Ramm, Dynamical systems method for solving operator equations, Commun. Nonlinear Sci. Numer. Simul., 9 (2004), 383–402.
- [36] Qi. Tang and D. Waxman, An integral equation describing an asexual population in a changing environment, Nonlinear Anal. Theory Methods Appl., 53 (2003), 683–699.
- [37] A. Tari Marzabad and S. M. Torabi, Numerical solution of two-dimensional integral equations of the first kind by multi-step methods, Comput. Methods Diff. Equations., 4(2) (2016), 128–138.
- [38] F. G. Tricomi, Integral equations, volume 5, Dover Publications, 1982.
- [39] A. M. Wazwaz, Linear and nonlinear integral equations: methods and applications, Springer Science & Business Media, 2011.
|