- [1] R. Abazari and A. Borhanifar, Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method, Comput. Math. Appl., 59(8) (2010), 2711–2722.
- [2] M. A. Abdou and A. A. Soliman, Variational iteration method for solving Burger’s and coupled Burger’s equations, J. Comput. Appl. Math., 181(2) (2005), 245–251.
- [3] K. K. Ali, K. R. Raslan, and T. S. El-Danaf, Non-polynomial spline method for solving coupled Burgers equations, Comput. Methods Differ. Equ., 3(3) (2015), 218–230.
- [4] E. Ashpazzadeh, B. Han, and M. Lakestani, Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation, J. Comput. Appl. Math., 317 (2017), 510–534.
- [5] A. Bashan, A numerical treatment of the coupled viscous Burgers’ equation in the presence of very large Reynolds number, Physica A, 545 (2020), 123755.
- [6] R. E. Bellman and R. E. Kalaba, Quasilinearization and nonlinear boundary-value problems, New York : Elsevier, 1965.
- [7] H. P. Bhatt and A. Q. M. Khaliq, Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation, Comput. Phys. Commun., 200 (2016), 117–138.
- [8] N. Chuathong and S. Kaennakham, Numerical solution to coupled Burgers’ equations by Gaussian-based Hermite collocation scheme, J. Appl. Math., 2018.
- [9] J. W. Daniel and B. K. Swartz, Extrapolated collocation for two-point boundary-value problems using cubic splines, IMA J. Appl. Math., 16(2) (1975), 161–174.
- [10] M. Dehghan, B. N. Saray, and M. Lakestani, Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions, Math. Methods Appl. Sci., 37(6) (2014), 894–912.
- [11] O. Ersoy and I. Dag, A trigonometric cubic B-spline finite element method for solving the nonlinear coupled Burger equation, arXiv preprint arXiv:1604.04419, 2016.
- [12] S. E. Esipov, Coupled Burgers equations: a model of polydispersive sedimentation, Phys. Rev. E, 52(4) (1995), 3711.
- [13] N. Fisher and B. Bialecki, Extrapolated ADI Crank–Nicolson orthogonal spline collocation for coupled Burgers’ equations, J. Differ. Equ. Appl., 26(1) (2020), 45–73.
- [14] H. E. Gadain, Solving coupled pseudo-parabolic equation using a modified double Laplace decomposition method, Acta Math. Sci., 38(1) (2018), 333–346.
- [15] M. Ghasemi, An efficient algorithm based on extrapolation for the solution of nonlinear parabolic equations, Int. J. Nonlin. Sci. Num., 19(1) (2018), 37–51.
- [16] A. Jafarabadi and E. Shivanian, Numerical simulation of nonlinear coupled Burgers’ equation through meshless radial point interpolation method, Eng. Anal. Bound. Elem., 95 (2018), 187–199.
- [17] D. Kaya, An explicit solution of coupled viscous Burgers’ equation by the decomposition method, Int. J. Math. Math. Sci., 27(11) (2001), 675–680.
- [18] A. H. Khater, R. S. Temsah, and M. Hassan, A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math., 222(2) (2008), 333–350.
- [19] M. Kumar and S. Pandit, A composite numerical scheme for the numerical simulation of coupled Burgers’ equation, Comput. Phys. Commun., 185(3) (2014), 809–817.
- [20] S. Kutluay and Y. Ucar, Numerical solutions of the coupled Burgers’ equation by the Galerkin quadratic B-spline finite element method, Math. Methods Appl. Sci., 36(17) (2013), 2403–2415.
- [21] T. R. Lucas, Error bounds for interpolating cubic splines under various end conditions, SIAM J. Numer. Anal., 11(3) (1974), 569–584.
- [22] R. C. Mittal and G. Arora, Numerical solution of the coupled viscous Burgers’ equation, Commun. Nonlinear. Sci., 16(3) (2011), 1304–1313.
- [23] R. C. Mittal and R. Jiwari, Differential quadrature method for numerical solution of coupled viscous Burgers’ equations, Int. J. Comput. Methods Eng. Sci. Mech., 13(2) (2012), 88–92.
- [24] R. C. Mittal and R. Rohila, A fourth order cubic B-spline collocation method for the numerical study of the RLW and MRLW equations, Wave motion, 80 (2018), 47–68.
- [25] R. C. Mittal and A. Tripathi, A collocation method for numerical solutions of coupled Burgers’ equations, Int. J. Comput. Methods Eng. Sci. Mech., 15(5) (2014), 457–471.
- [26] J. Nee and J. Duan, Limit set of trajectories of the coupled viscous Burgers’ equations, Appl. Math. Lett., 1(1) (1998), 57–61.
- [27] P. M. Prenter, Splines and Variational Methods, New York : Wiley-interscience publication, 1975.
- [28] A. Rashid and A. I. B. M. Ismail, A Fourier pseudospectral method for solving coupled viscous Burgers equations, Comput. Methods. Appl. Math., 9(4) (2009), 412–420.
- [29] K. R. Raslan, T. S. El-Danaf, and K. K. Ali, Collocation method with cubic trigonometric B-spline algorithm for solving coupled Burgers’ equation, Far East J. Appl. Math., 95(2) (2016), 109.
- [30] R. Rohila and R. C. Mittal, Numerical study of reaction diffusion Fisher’s equation by fourth order cubic B-spline collocation method, Math. Sci., 12(2) (2018), 79–89.
- [31] P. Roul, A fourth-order non-uniform mesh optimal B-spline collocation method for solving a strongly nonlinear singular boundary value problem describing electrohydrodynamic flow of a fluid, Appl. Numer. Math., 153 (2020), 558–574.
- [32] P. Roul, A fourth order numerical method based on B-spline functions for pricing Asian options, Comput. Math. Appl., 80(3) (2020), 504–521.
- [33] P. Roul and V. P. Goura, B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems, Appl. Math. Comput., 341 (2019), 428–450.
- [34] P. Roul and V. P. Goura, A high-order B-spline collocation scheme for solving a nonhomogeneous time-fractional diffusion equation, Math. Methods Appl. Sci., 44(1) (2021), 546–567.
- [35] B. N. Saray, M. Lakestani, and M. Dehghan, On the sparse multiscale representation of 2-D Burgers equations by an efficient algorithm based on multiwavelets, Numer. Methods Partial Differ. Equ., (2021).
- [36] M. A. Shallal, K. K. Ali, K. R. Raslan, and A. H. Taqi, Septic B-spline collocation method for numerical solution of the coupled Burgers’ equations, Arab. J. Basic Appl. Sci., 26(1) (2019), 331–341.
- [37] Shallu and V. K. Kukreja, Analysis of RLW and MRLW equation using an improvised collocation technique with SSP-RK43 scheme, Wave Motion, (2021), p.102761.
- [38] Shallu and V. K. Kukreja, An improvised collocation algorithm with specific end conditions for solving modified Burgers equation, Numer. Methods Partial Differ. Equ., 37(1) (2021), 874–896.
- [39] Shallu, A. Kumari, and V. K. Kukreja, An efficient superconvergent spline collocation algorithm for solving fourth order singularly perturbed problems, Int. J. Appl. Comput. Math., 6(5) (2020), 1–23.
- [40] Shallu, A. Kumari, and V. K. Kukreja, An improved extrapolated collocation technique for singularly perturbed problems using cubic B-spline Functions, Mediterr. J. Math., 18(4) (2021), 1–29.
- [41] A. A. Soliman, The modified extended tanh-function method for solving Burgers-type equations, Physica A, 361(2) (2006), 394–404.
- [42] V. K. Srivastava, M. K. Awasthi, and M. Tamsir, A fully implicit finite-difference solution to one dimensional coupled nonlinear Burgers’ equations, Int. J. Math. Math. Sci., 7(4) (2013), 23.
- [43] H. Zadvan and J. Rashidinia, Development of non polynomial spline and new B-spline with application to solution of Klein-Gordon equation, Comput. Methods Differ. Equ., 8(4) (2020), 794–814.
|