تعداد نشریات | 41 |
تعداد شمارهها | 1,027 |
تعداد مقالات | 12,538 |
تعداد مشاهده مقاله | 13,720,586 |
تعداد دریافت فایل اصل مقاله | 11,674,305 |
Numerical solution of the hyperbolic telegraph equation using cubic B-spline-based differential quadrature of high accuracy | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 25 دی 1400 اصل مقاله (5.37 MB) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2022.47744.1997 | ||
نویسندگان | ||
Athira Babu1؛ Bin Han2؛ Noufal Asharaf ![]() | ||
1Department of Mathematics, Cochin University of Science and Technology, Kerala, India. | ||
2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada. | ||
31Department of Mathematics, Cochin University of Science and Technology, Kerala, India. | ||
چکیده | ||
By constructing a newly modified cubic B-splines having the optimal accuracy order four, we propose a numerical scheme for solving the hyperbolic telegraph equation using a differential quadrature method. The spatial derivatives are approximated by the differential quadrature whose weight coefficients are computed using the newly modified cubic B-splines. Our modified cubic B-splines retain the tridiagonal structure and achieve the fourth order convergence rate. The solution of the associated ODEs is advanced in the time domain by the SSPRK scheme. The stability of the method is analyzed using the discretization matrix. Our numerical experiments demonstrate the better performance of our proposed scheme over several known numerical schemes reported in the literature. | ||
کلیدواژهها | ||
Differential quadrature method؛ SSPRK scheme؛ Modified cubic B-spline basis functions؛ Discretization matrix | ||
آمار تعداد مشاهده مقاله: 136 تعداد دریافت فایل اصل مقاله: 109 |