- [1] K. K. Ali, R. Yilmazer, and H. Bulut, Analytical Solutions to the Coupled Boussinesq–Burgers Equations via Sine-Gordon Expansion Method, Adv. Intell. Syst. Comput., Springer, Cham, 1111 (2020), 233-240.
- [2] A. Ba¸shan, N. M. Ya˘gmurlu, Y. U¸car, and A. Esen, Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation, Numer. Methods Partial Differ. Equations, 37 (2009), 690-706.
DOI: 10.1002/num.22547.
- [3] A. Ba¸shan, N. M. Ya˘gmurlu, Y. U¸car, and A. Esen, A new perspective for the numerical solution of the Modified Equal Width wave equation, Math. Methods Appl Sci.,
DOI: 10.1002/mma.7322
- [4] R. J. Cheng and K. M. Liew, Analyzing modified equal width (MEW) wave equation using the improved element-free Galerkin method, Eng. Anal. Boundary Elem., 36 (2012), 1322–1330. DOI: 10.1016/j.enganabound.2012.03.013
- [5] I. C¸ elikkaya, Operator splitting method for numerical solution of modified equal width equation, Tbilisi Math. J., 12 (2019), 51–67.
- [6] I. T. Daba and G. F. Dureessa, A Robust computational method for singularly perturbed delay parabolic convection- di usion equations arising in the modeling of neuronal variability, Comput. Methods Differ. Equations, 10(2) 475-488.
DOI:10.22034/cmde.2021.44306.1873
- [7] I˙. Da˘g and B. Saka, A cubic B-spline collocatıon method for the EW equation, Math. Comput. Appl., 9(3) (2004), 381-392.
DOI: 10.3390/mca9030381
- [8] M. Dehghan and M. Lakestani, The Use of Cubic B-Spline Scaling Functions for Solving the One-dimensional Hyperbolic Equation with a Nonlocal Conservation Condition, Wiley InterScience, 2006.
DOI 10.1002/num.20209
- [9] A. Esen and S. Kutluay, Solitary wave solutions of the modified equal width wave equation, Commun. Non linear Sci. Numer. Simul. 13(3) (2008), 1538–1546.
DOI: 10.1016/j.cnsns.2006.09.018
- [10] A. Esen, A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines, Int. J. Comput. Math., 83(5-6) (2006), 449–459.
DOI: 10.1080/00207160600909918
- [11] Y. M. A. Essa, Multigrid method for the numerical solution of the modified equal width wave equation, Appl. Math., 7 (2016), 1140–1147.
DOI: 10.4236/am.2016.710102
- [12] D. J. Evans and K. R. Raslan, Solitary waves for the generalized equal width (GEW) equation, Int. J. Comput. Math., 82(4) (2005), 445–455.
DOI: 10.1080/0020716042000272539
- [13] W. Gao, H. F. Ismael, H. Bulut, and H. M. Baskonus, Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Physica Scripta, 95(3) (2020).
- [14] L. R. T. Gardner and G. A. Gardner, Solitary waves of the EWE equation, J. Comput. Phys. 101 (1992), 218–223.
- [15] T. Geyikli and S. B. G. Karako¸c, Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation, Appl. Math., 2 (2011), 739-749.
- [16] T. Geyikli and S. B. G. Karako¸c, Subdomain Finite Element Method with Quartic B Splines for the Modified Equal Width Wave Equation, Zh. Vychisl. Mat. Mat. Fiz., 55(3) (2015), 410-421.
- [17] T. Geyikli and S. B. G. Karako¸c, Petrov–Galerkin method with cubic B-splines for solving the MEW equation, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 215–227.
- [18] A. G. Kaplan and Y. Dereli, Numerical solutions of the GEW equation using MLS collocation method, Int. J. Mod. Phys. C, 28(1) (2017).
DOI: 10.1142/S0129183117500115.
- [19] S. Hamdi, W. H. Enright, W. E. Schiesserand, and J. J. Gottlieb, Exact solutions of the generalized equal width wave equation, In Proceedings of the International Conference on Computational Science and its Applications, (Springer-Verlag), (2003), 725-734.
- [20] H. F. Ismael, H. Bulut, and H. M. Baskonus, Optical soliton solutions to the Fokas–Lenells equation via sine- Gordon expansion method and (m + (G’/G))-expansion method, Pramana- J. Phys., (2020), 94:35.
- [21] L. Jin, Analytical Approach to the Modified Equal Width Equation, Int. J. Contemp. Math. Sciences, 4(23) (2009), 1113-1119.
- [22] S. B. G. Karako¸c and H. Zeybek, A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation, Statistics, Optimization & Information Computing, 4(1) (2016), 30-41.
DOI: 10.19139/soic.v4i1.167
- [23] S. B. G. Karako¸c and T. Geyikli, A numerical solution of the MEW equation using sextic B-splines, J. Adv. Res. Appl. Math., 5 (2013), 51–65.
DOI: 10.5373/jaram.1542.091012
- [24] S. B. G. Karako¸c and T. Geyikli, Numerical solution of the modified equal width wave equation, Int. J. Diff. Equations, (2012), 1–15.
DOI: 10.1155/2012/587208
- [25] S. B. G. Karako¸c, Y. Ucar and N. M. Ya˘gmurlu, Different Linearization Techniques for the Numerical Solution of the MEW Equation, Sel¸cuk J. Appl. Math., 13(2) (2012), 43-62.
- [26] D. J. Korteweg and G. de Vries, On the change form of long waves advancing in a rectangular canal, and on a new type of long stationary wave, Philosophical Magazine and Journal of Science, 39 (1895), 422–443.
- [27] M. Lakestani and M. Dehghan, Numerical Solution of Fokker—Planck Equation Using the Cubic B-Spline Scaling Functions, Wiey InterScience, 2008.
DOI 10.1002/num.20352
- [28] M. Lakestani, Numerical Solutions of the KdV Equation Using B-Spline Functions, Iran. J. Sci. Technol. Trans. Sci., 41 (2017), 409–417.
DOI 10.1007/s40995-017-0260-7
- [29] J. Lu, He’s variational iteration method for the modified equal width equation, Chaos, Solitons and Fractals, 39(5) (2007), 2102–2109.
DOI: 10.1016/j.chaos.2007.06.104
- [30] P. J. Morrison, J. D. Meiss, and J. R. Carey, Scattering of Regularized-Long-Wave Solitary Waves, Physica D: Nonlinear Phenomena 11 (1984), 324–336.
DOI: 10.1016/0167-2789(84)90014-9
- [31] P. J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Philos. Soc., 85 (1979), 143–159.
- [32] K. R. Raslan, Collocation method using the cubic B-spline for the generalized equal width equation, Int. J. Simul. Process Model., 2 (2006), 37–44.
DOI: 10.1504/IJSPM.2006.009019
- [33] T. Roshan, A Petrov-Galerkin method for solving the generalized equal width (GEW) equation, J. Comput. Appl. Math., 235(6) (2011), 1641–1652.
DOI: 10.1016/j.cam.2010.09.006
- [34] S. G. Rubin and R. A Graves, A cubic spline approximation for problems in fluid mechanics, National aeronautics and space administration,Technical Report, Washington, 1975.
- [35] B. Saka, Algorithms for numerical solution of the modified equal width wave equation using collocation method, Math. Comput. Modell., 45 (2007), 1096–1117.
DOI: 10.1016/j.mcm.2006.09.012
- [36] M. A. Shallal , K. K. Ali, K. R. Raslan, H. Rezazadeh, and A. Bekir, Exact solutions of the conformable fractional EW and MEW equations by a new generalized expansion method, J. Ocean Eng. Sci., 5(3) (2020), 223-229.
- [37] N. M. Ya˘gmurlu and A. S. Karaka¸s, Numerical solutions of the equal width equation by trigonometric cubic B- spline collocation method based on Rubin–Graves type linearization, Numer Methods Partial Differential Eq., 3(6) (2020), 1170–1183.
- [38] H. Zadvan and J. Rashisidina, Development of non polynomial spline and New B-spline with application to solution of Klein-Gordon equation, Comput. Meth. Differ. Equations, 8(4) (2020), 794-814.
DOI:10.22034/cmde.2020.27847.1377
- [39] S. I. Zaki, Solitary wave interactions for the modified equal width equation, Computer Physics Communations, 126 (2000), 219–231.
DOI: 10.1016/S0010-4655(99)00471-3
- [40] S. I. Zaki, A least-squares Finite element scheme for the EW equation, Comput. Methods Appl. Mech. Engrg. 189 (2000), 587-594.
DOI: 10.1016/S0045-7825(99)00312-6
- [41] H. Zeybek and S. B. G. Karako¸c, Application of The Collocation Method With B-Splines To The GEW Equation, Electron. Trans. Numer. Anal., 46 (2017), 71-88.
- [42] A. M. Wazwaz, The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants, Commun. Nonlinear Sci. Numer. Simul., 11(2) (2006), 148–160. DOI: 10.1016/j.cnsns.2004.07.001
|