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Abstract

This paper is devoted to prove the existence of extremal solutions for multi-term nonlinear fractional differential
equations with nonlinear boundary conditions. The fractional derivative is of Caputo type and the inhomogeneous
term depends on the fractional derivatives of lower orders. By establishing a new comparison theorem and applying

the monotone iterative technique, we show the existence of extremal solutions. The method is a constructive
method that yields monotone sequences that converge to the extremal solutions. As an application, some examples

are presented to illustrate the main results.
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1. Introduction

Fractional differential equations appear naturally in a number of fields such as physics, geophysics, polymer rheology,
viscoelasticity, capacitor theory, electrical circuits, electron-analytical chemistry, biology, etc. For more details and
applications, we refer the reader to the books [11, 23, 27] and references therein. The fractional operators are nonlocal,
therefore they are suitable for constructing models possessing memory and hereditary properties of various materials
and processes [25]. The presence of memory terms in such models not only takes into account the history of the process
involved but also carries its impact to present and future development of the process. Fractional differential equations
are also regarded as an alternative model to nonlinear differential equations [7] and the references [3, 4, 22, 32].

Recently, there are many papers dealing with the existence of solutions for nonlinear fractional differential equation
using various methods. We refer the interested readers to the valuable monographs of Kilbas et al. [23] as well to
[11, 27] and the references [1, 6, 15, 18, 20, 21, 29]. Among the most important of all fractional differential equations are
undoubtedly multi-term fractional differential equations. These problems are of interest because of their appearance in
mathematical models of several important physical phenomena. A classical example is Bagley-Torvik equation which
arises in the modeling of the motion of a rigid plate immersed in a Newtonian fluid [16]. Other examples are The
Langevin equation which is widely used to describe the evolution of physical phenomena in fluctuating environments
and the steady nonlinear fractional advection-dispersion equation [14, 17, 19]. Analysis of multi-term fractional
differential equations has been carried out by various researchers. Recently, Kosmatov [24] considered the existence
of unique continuously differentiable solutions for multi-term fractional differential equations with initial conditions.
In [9, 10] Deng et al. improved the result in [24], and obtained some new sufficient conditions for the existence and
uniqueness results. Recently, multi-point boundary value problems for multi-term fractional differential equations
have been studied in [28]. Some more recent work on multi-term fractional differential equations can be found in
[5, 12, 26, 31].
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This paper deals with the existence of extremal solutions of the following nonlinear multi-term fractional equation
with nonlinear conditions{

Dαu(t) = f (t, u(t), Dα1u(t), Dα2u(t), · · · , Dαmu(t)) , 0 < t < 1,
gi
(
u(i)(0), u(i)(1)

)
= 0, i = 0, 1, · · · , n, (1.1)

where m,n ∈ N, α ∈ (n, n+ 1) and max{α1, α2, · · · , αm} ≤ n, and Dα is the Caputo fractional derivative of order α.
The nonlinear functions f and gi are assumed to satisfy certain conditions, which will be specified later.

In this study, the technique used is in the basis of monotone iteration scheme which is an interesting and powerful
mechanism that offers theoretical existence results for nonlinear problems. The advantage and importance of this
method arises from the fact that it is a constructive method that yields monotone sequences that converge to the
extremal solutions of the main problem, see [13, 33]. As a first step, the comparison result associated to the main
problem is obtained. This step was the main advantage of our approach compared to the other studies which help us
to construct some arbitrarily closely approximate solutions by using lower and upper solutions. On the other hand,
to the best of our knowledge, the existence of extremal solutions for nonlinear multi-term fractional equations with
nonlinear boundary conditions have not been studied previously.

These conditions are of significance because they have applications in the problems of physics and other areas of
applied mathematics. Conditions of this type can be applied in the theory of elasticity with better effect than the
initial or boundary conditions.

For the importance of nonlinear boundary conditions in different fields we refer to [8, 30] and the references cited
therein.

The paper is organized as follows. We give a brief review of the fractional calculus theory in section 2. In section
3, we establish a new comparison principle and obtain the existence of extremal solutions for (1.1) by utilizing the
monotone iterative technique and the method of lower and upper solutions. Finally, some examples are given to
illustrate our results.

2. Preliminaries

For the convenience of the reader, we recall the necessary definitions of fractional calculus theory and Lemmas. For
more detailed references, see [11, 23, 27]. Throughout the paper ACn[0, 1], n ∈ N, denotes the set of functions having
absolutely continuous nth derivative on [0, 1], and AC[0, 1] is the set of absolutely continuous functions on [0, 1].

Definition 2.1. The fractional order integral of order α > 0 of a function u : [0, 1]→ R is defined as

Iαu(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(τ)dτ,

provided the integral exists on [0, 1].

Definition 2.2. The Caputo fractional derivative of order α > 0 of a function u ∈ ACn−1[0, 1] is defined as

Dαu(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1u(n)(τ)dτ = In−αu(n)(t),

where n− 1 < α ≤ n.

Lemma 2.3. [11]. Let α ∈ (n, n+ 1). If u ∈ ACn[0, 1], then IαDαu(t) = u(t)−
∑n
i=0

u(i)(0)
i! ti.

Lemma 2.4. [24]. Let u ∈ Cn[0, 1] and α, ε ≥ 0 be such that α, α+ ε ∈ [n− 1, n]. Then DεDαu(t) = Dα+εu(t).

Lemma 2.5. [2]. Let α ∈ (n, n+ 1) and h ∈ AC[0, 1]. Then the linear fractional initial value problem

Dαu(t) = h(t), u(i)(0) = ηi, i = 0, 1, · · · , n,
has a unique solution u ∈ ACn[0, 1] with the following integral form

u(t) =

n∑
i=0

ηi
i!
ti + Iαh(t).
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3. Main result

In this section, we present an important comparison result about fractional differential equations and use it to
construct two monotone iterative sequences which converge to extremal solutions for the problem (1.1).

Definition 3.1. We define the following order relation for ACn[0, 1],

u � v ⇐⇒ u(i)(t) ≤ v(i)(t), t ∈ [0, 1], i = 0, 1, · · · , n.

Remark 3.2. In view of Dγu(t) = Idγe−γDdγeu(t) where dγe = min{k ∈ N : γ ≤ k} together with the fact that the
fractional integral operator is a monotone operator, we see that u � v if and only if Dγu(t) ≤ Dγv(t) on [0, 1] for
every γ ∈ [0, n].

Lemma 3.3. (Comparison result). Let α ∈ (n, n+ 1), n ∈ N and u ∈ ACn[0, 1] satisfies{
Dαu(t) ≤ 0, t ∈ (0, 1],
u(i)(0) ≤ 0, i = 0, 1, · · · , n,

then u � 0 on [0, 1].

Proof. Since u ∈ ACn[0, 1], we have Dαu(t) = I(n+1)−αu(n+1)(t) = Dα−nu(n)(t). Therefore{
Dα−nu(n)(t) ≤ 0,
u(n)(0) ≤ 0.

(3.1)

Now by applying the fractional integral operator Iα−n on both sides of (3.1), and using Lemma 2.3 together with the
fact that the integral operator is a monotone operator, we have u(n)(t) ≤ u(n)(0) ≤ 0 on [0, 1]. In fact, we have{

u(n)(t) ≤ 0,
u(n−1)(0) ≤ 0.

(3.2)

Similarly, by applying the integral operator I1 on both sides of (3.2), we have u(n−1)(t) ≤ u(n−1)(0) ≤ 0 on [0, 1]. By
repeating this process n − 1 times, we deduce u(i)(t) ≤ 0 on [0, 1] for every i = 0, 1, · · · , n. On the other hand, since
u ∈ Cn[0, 1], we obtain from Lemma 2.4, {

Ddγe−γDγu(t) ≤ 0,
Dγu(0) = 0,

(3.3)

for γ ∈ (0, n), γ 6∈ N. Note that Dγu(0) = Idγe−γu(dγe)(0) = 0. Therefore, by applying the integral operator Idγe−γ

on both sides of (3.3), we deduce Dγu(t) ≤ 0. �

Definition 3.4. We say that u ∈ ACn[0, 1] is called a lower solution of (1.1) if{
Dαu(t) ≤ f (t, u(t), Dα1u(t), Dα2u(t), · · · , Dαmu(t)) , 0 < t < 1,
gi
(
u(i)(0), u(i)(1)

)
≤ 0, i = 0, 1, · · · , n.

and it is an upper solution of (1.1) if the above inequalities are reverted.

We list the following assumptions for convenience.

(H1) Assume that u, u ∈ ACn[0, 1] are lower and upper solutions of the problem (1.1), respectively, and u � u.
(H2) f : [0, 1]× Rm+1 → R be a function such that f (t, u(t), Dα1u(t), Dα2u(t), · · · , Dαmu(t)) ∈ AC[0, 1] for every

u ∈ ACn[0, 1].
(H3) The function f satisfies

f (t, u(t), Dα1u(t), Dα2u(t), · · · , Dαmu(t)) ≤ f (t, v(t), Dα1v(t), Dα2v(t), · · · , Dαmv(t)) ,

for u � u � v � u.
(H4) For every i = 0, 1, · · · , n, gi ∈ C(R× R,R), there exist constants λi > 0 and µi ≥ 0, such that

gi(x̄, ȳ)− gi(x, y) ≤ λi(x̄− x)− µi(ȳ − y), u(i)(0) ≤ x ≤ x̄ ≤ u(i)(0), u(i)(1) ≤ y ≤ ȳ ≤ u(i)(1).
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Theorem 3.5. Suppose that conditions (H1)-(H4) hold. Then, there is an extremal solution (u∗, v∗) ∈ [u, u]× [u, u] of
the problem (1.1). Moreover, there exist monotone iterative sequences {uj}, {vj} ⊆ [u, u] such that for every γ ∈ [0, n],
Dγuj → Dγu∗ and Dγvj → Dγv∗ uniformly on [0, 1].

Proof. The proof is divided into four steps:
Step 1. Set u0 = u and v0 = u and then given {uj}∞j=0 and {vj}∞j=0 inductively define uj+1 ∈ ACn[0, 1] and
vj+1 ∈ ACn[0, 1] to be the unique solutions of the linear problem{

Dαuj+1(t) = f (t, uj(t), D
α1uj(t), D

α2uj(t), · · · , Dαmuj(t)) , j ≥ 0

u
(i)
j+1(0) = ηij , i = 0, 1, · · · , n, (3.4)

and {
Dαvj+1(t) = f (t, vj(t), D

α1vj(t), D
α2vj(t), · · · , Dαmvj(t)) , j ≥ 0

v
(i)
j+1(0) = ηij , i = 0, 1, · · · , n, (3.5)

where ηij = u
(i)
j (0) − 1

λi
gi

(
u
(i)
j (0), u

(i)
j (1)

)
and ηij = vj(0) − 1

λi
gi

(
v
(i)
j (0), v

(i)
j (1)

)
. From Lemma 2.5, we know that

(3.4) and (3.5) have a unique solutions in ACn[0, 1].
Step 2. We claim

u = u0 � u1 � · · · � uj � uj+1 � · · · � vj+1 � vj � · · · � v1 � v0 = u. (3.6)

To confirm this, first note from (3.4) for j = 0 that{
Dαu1(t) = f (t, u0(t), Dα1u0(t), Dα2u0(t), · · · , Dαmu0(t)) ,

u
(i)
1 (0) = u

(i)
0 (0)− 1

λi
gi

(
u
(i)
0 (0), u

(i)
0 (1)

)
, i = 0, 1, · · · , n. (3.7)

Recalling the definition of lower solution u0 = u and setting w = u0 − u1, we find{
Dαw(t) ≤ 0,

w(i)(0) = 1
λi
gi

(
u
(i)
0 (0), u

(i)
0 (1)

)
≤ 0, i = 0, 1, · · · , n.

Consequently Lemma 3.3 implies w � 0, so that u0 � u1. Now, from (3.7) and using assumptions (H3) and (H4), we
infer

Dαu1(t) = f (t, u0(t), Dα1u0(t), Dα2u0(t), · · · , Dαmu0(t))

≤ f (t, u1(t), Dα1u1(t), Dα2u1(t), · · · , Dαmu1(t)) ,

and

gi

(
u
(i)
1 (0), u

(i)
1 (1)

)
≤ gi

(
u
(i)
0 (0), u

(i)
0 (1)

)
+ λi

(
u
(i)
1 (0)− u(i)0 (0)

)
− µi

(
u
(i)
1 (1)− u(i)0 (1)

)
= −µi

(
u
(i)
1 (1)− u(i)0 (1)

)
≤ 0.

Therefore, u1 is lower solution of problem (1.1). We can now repeat the argument above to deduce u1 � u2 and
then an induction verifies that uj � uj+1 for j ≥ 2. Assertion vj � vj−1 for j ∈ N follows similarly. Now, we put
w = u1 − v1. From (H3) and (H4), we have{

Dαw(t) ≤ 0,

w(i)(0) ≤ µi

λi

(
u
(i)
0 (1)− v(i)0 (1)

)
≤ 0, i = 0, 1, · · · , n.

Consequently, w � 0, so that u1 � v1. Using mathematical induction, we see that uj � vj for j ≥ 2.
Step 3. In light of (3.6), it is easy to show {uj} and {vj} are uniformly bounded and equicontinuous in [u, u]. By the
Arzela-Ascoli Theorem, for every γ ∈ [0, n], we have

lim
n→∞

Dγuj = u∗, lim
n→∞

Dγvj = Dγv∗,

uniformly on [0, 1], and the limit functions u∗, v∗ satisfy (1.1). Moreover, u∗, v∗ ∈ [u, u].
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Step 4. Finally, we prove u∗ and v∗ are the extremal solutions of (1.1) in [u, u]. Let u ∈ [u, u] be any solution of (1.1).
We suppose that uj � u � vj for some j ∈ N. Then, by assumption (H3), we see that

f (t, uj(t), D
α1uj(t), D

α2uj(t), · · · , Dαmuj(t)) ≤ f (t, u(t), Dα1u(t), Dα2u(t), · · · , Dαmu(t))

≤ f (t, vj(t), D
α1vj(t), D

α2vj(t), · · · , Dαmvj(t)) ,

and

u
(i)
j+1(0) = u

(i)
j (0)− 1

λi
gi

(
u
(i)
j (0), u

(i)
j (1)

)
= u

(i)
j (0) +

1

λi
g
(
u(i)(0), u(i)(1)

)
− 1

λi
g
(
u
(i)
j (0), u

(i)
j (1)

)
≤ u(i)(0)− µi

λi

(
u(i)(1)− u(i)j (1)

)
≤ u(i)(0).

Similarly, we have u(i)(0) ≤ v(i)j+1(0). Hence{
Dαuj+1(t) ≤ Dαu(t) ≤ Dαvj+1(t),

u
(i)
j+1(0) ≤ u(i)(0) ≤ v(i)j+1(0).

Consequently, uj+1 � u � vj+1. Therefore, we have

uj � u � vj , j = 0, 1, 2, · · · . (3.8)

Thus, taking limit in (3.8) as j →∞, we have u∗ � u � v∗. That is, u∗ and v∗ are the extremal solutions of (1.1) in
[u, u]. �

Remark 3.6. In a similar way, we can deal with the existence results of solutions for problem (1.1) with more general
nonlinear nonlocal conditions

gi

(
u(i)(t0), u(i)(t1), · · · , u(i)(tr)

)
= 0, i = 0, 1, · · · , n,

where 0 = t0 < t1 < · · · < tr = 1, under some conditions.

4. Examples

Example 4.1. Let us consider the following problem{
D

3
2u(t) = 3(1+t2)

10 + 3
10D

1
2u(t) + 1

2u
′(t), 0 < t < 1,

u2(0)− u(0) = 0, u′(0) = 0.
(4.1)

A relatively simple calculus, with the help of Maple, shows that u(t) = 0 and u(t) = 1 + 0.1 t + t1.5 be lower and
upper solutions of (4.1), respectively, and u � u. In addition, it is easy to verify that the assumptions (H2) - (H4)
hold. Therefore, all the assumption of Theorem 3.5 hold and consequently, there exist monotone iterative sequences
{uj}, {vj}, which converge uniformly on [0, 1] to the extremal solutions u∗ and v∗ of (4.1) in [0, 1+0.1 t+t1.5]. Moreover,
for every γ ∈ [0, 1], the sequences {Dγuj} and {Dγvj} converge uniformly Dγu∗ and Dγv∗ on [0, 1], respectively. On
the other hand, from Theorem 3.5 and Lemma 2.5, the sequences {uj} and {vj} can be obtained as

uj+1(t) = uj(0)−
(
u2j (0)− uj(0)

)
+

1

Γ
(
3
2

) ∫ t

0

(t− s)
1
2

(
3

10

(
1 + s2 +D

1
2uj(s)

)
+

1

2
u′j(s)

)
ds, j ≥ 0,

and

vj+1(t) = vj(0)−
(
v2j (0)− vj(0)

)
+

1

Γ
(
3
2

) ∫ t

0

(t− s)
1
2

(
3

10

(
1 + s2 +D

1
2 vj(s)

)
+

1

2
v′j(s)

)
ds, j ≥ 0.

The graphs of uj and vj , for j = 0, 1, · · · , 6 are shown in Figure 1.
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Figure 1. Graphs of uj and vj

As shown in Figure 1, we see that u5 and v5 can be a suitable approximations of the minimal and maximal solutions
of (4.1), respectively. Furthermore, the graphs of some derivatives of uj and vj , for j = 0, 1, · · · , 8 are shown in Figures
2 and 3.

Figure 2. Graphs of u′j and v′j

Example 4.2. Let us consider the following problem{
D

5
2u(t) = 1 + t2 + 1

4u(t)u′(t) + 1
5D

1
4u(t), 0 < t < 1,

u2(0)− u(1) + 4u(0) = 1, 8u′(0)− 1
10u
′(1) = 1

5 , 4u′′(0)− 1
2u
′′(0)u′′(1) = 0.

(4.2)

Here f(t, u(t), Dα1u(t), u′(t)) = 1 + t2 + 1
4u(t)u′(t) + 1

5D
1
4u(t), g0(x, y) = x2 − y + 4x − 1, g1(x, y) = 8x − 1

10y −
1
5

and g2(x, y) = 4x − 1
2xy. A relatively simple calculus, with the help of Maple, shows that u(t) = 0 and u(t) =

1 + 0.1 t+ 0.05 t2 + 2 t
5
2 be lower and upper solutions of (4.2), respectively, and u � u. In addition, it is easy to verify

that the assumptions (H2) and (H3) hold and gi ∈ C(R× R,R), i = 0, 1, 2 and we have

g0(x̄, ȳ)− g0(x, y) ≤ 6(x̄− x)− (ȳ − y), 0 ≤ x ≤ x̄ ≤ 1, 0 ≤ y ≤ ȳ ≤ 315

100
,

g1(x̄, ȳ)− g1(x, y) ≤ 8(x̄− x)− 1

10
(ȳ − y), 0 ≤ x ≤ x̄ ≤ 1

10
, 0 ≤ y ≤ ȳ ≤ 52

10
,

g2(x̄, ȳ)− g2(x, y) ≤ 4(x̄− x), 0 ≤ x ≤ x̄ ≤ 1

10
, 0 ≤ y ≤ ȳ ≤ 76

10
.



38 H. FAZLI, F. BAHRAMI, AND S. SHAHMORAD

Figure 3. Graphs of D
1
2uj and D

1
2 vj

Therefore, all the assumption of Theorem 3.5 hold and consequently, there exist monotone iterative sequences {uj}, {vj},
which converge uniformly on [0, 1] to the extremal solutions (u∗, v∗) of (4.2) in [0, 1 + 0.1 t+ 0.05 t2 + 2 t

5
2 ]. Moreover,

for every γ ∈ [0, 2], the sequences {Dγuj} and {Dγvj} converge uniformly Dγu∗ and Dγv∗ on [0, 1], respectively. On
the other hand, from Theorem 3.5 and Lemma 2.5, the sequences {uj} and {vj} can be obtained as

uj+1(t) = uj(0)− 1

6

(
u2j (0)− uj(1) + 4uj(0)− 1

)
+

1

8

(
1

10
u′j(1) +

1

5

)
t+

1

8
u′′j (0)u′′j (1)t2

+
1

Γ
(
5
2

) ∫ t

0

(t− s)
3
2

(
1 + s2 +

1

4
uj(s)u

′
j(s) +

1

5
D

1
4uj(s)

)
ds, j ≥ 0,

and

vj+1(t) = vj(0)− 1

6

(
v2j (0)− vj(1) + 4vj(0)− 1

)
+

1

8

(
1

10
v′j(1) +

1

5

)
t+

1

8
v′′j (0)v′′j (1)t2

+
1

Γ
(
5
2

) ∫ t

0

(t− s)
3
2

(
1 + s2 +

1

4
vj(s)v

′
j(s) +

1

5
D

1
4 vj(s)

)
ds, j ≥ 0,

The graphs of uj and vj , for j = 0, 4, 8 are shown in Figure 4.

Figure 4. Graphs of uj and vj
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This figure shows that the minimal and maximal solutions in the interval [u, u] are equal. Therefore, from Theorem
3.5 , we deduce the problem (4.2) has unique solution in the interval [u, u]. As shown in Figure 4, we see that u8 as
well as v8 can be a suitable approximations of the uniqe solution of (4.2). Furthermore, the graphs of some derivatives
of uj and vj , for j = 0, 4, 8 are shown in Figures 5,6 and 7.

Figure 5. Graphs of u′j and v′j

Figure 6. Graphs of u′′j and v′′j

5. Conclusion

We have presented some results dealing with the existence of extremal solutions for multi-term nonlinear fractional
differential equations with nonlinear boundary conditions. As a first step, we have established a new comparison
result by applying the tools of fractional calculus. Then, the existence results are established by dint of the monotone
iterative technique. The method is a constructive method that yields monotone sequences that converge to the extremal
solutions. Two numerical examples have been carried out to verify the effectiveness and reliability of the method.
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Figure 7. Graphs of D
1
4uj and D

1
4 vj
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