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Abstract

Numerical methods have essential role to approximate the solutions of Partial Differential Equations (PDEs).

Spectral method is one of the best numerical methods of exponential order with high convergence rate to solve

PDEs. In recent decades the Chebyshev Spectral Collocation (CSC) method has been used to approximate
solutions of linear PDEs. In this paper, by using linear algebra operators, we implement Kronecker Chebyshev

Spectral Collocation (KCSC) method for n-order linear PDEs. By statistical tools, we obtain that the Run times

of KCSC method has polynomial growth, but the Run times of CSC method has exponential growth. Moreover,
error upper bounds of KCSC and CSC methods are compared.
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1. Introduction

Partial Differential Equations have many applications in modern mechanics and theoretical physics. For example,
PDEs were used by James Clerk Maxwell to model electromagnetic fields interacting with electrical charges and
currents, by Ludwig Boltzmann to describe the non-equilibrium dynamics of rarified gases, by Albert Einstein to
phrase the laws of gravitation in the general theory of relativity and by Erwin Schrödinger and Werner Heisenberg to
formulate quantum mechanics in mathematical-analytical terms.

With a short look at the history of partial differential equations (PDEs) it can be found that analytic methods
are very expensive and in many cases inefficient [9, 16, 22]. On the other hand, two nearly similar PDEs may have
completely different solutions, so it would not be possible to offer a similar analytic method to solve all PDEs.

According to most mathematicians to assess numerical methods efficiency, the computations order and speed con-
vergence should be considered. So far, in solving linear PDEs, several numerical methods have been applied and
compared [10, 12, 13]. Among these methods, the spectral method is one of the important numerical methods for solv-
ing these PDEs. Spectral methods try to approximate functions (solutions of differential equations, partial differential
equations, etc.) by means of truncated series of orthogonal polynomials. The well-known Fourier series (for periodic
problems), as well as series made up by Chebyshev or Legendre polynomials (for non-periodic problems), are examples
of such series of orthogonal functions. Spectral methods are geometrically less flexible than lower-order methods, and
they are usually more complicated to implement[1, 3, 5, 6, 8, 18–21, 23, 25–28]. In this paper, by using the Kronecker
product, we implement the Kronecker Chebyshev Spectral Collocation KCSC method for n-order linear PDEs and we
show that it has less computational cost than the CSC method, in addition to the benefit of generalizing the method
to n-order linear PDEs.

Also, the error upper bound of the CSC and KCSC methods is compared. The following are some of the benefits
of the error upper bound offered for the KCSC method compared to earlier error upper bounds:
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1-The error upper bound for n-order linear PDEs has been generalized.
2-For some matrix norms, the error upper bound of the KCSC approach is reduced.
Moreover, by using Matlab codes, we will compare the CPU and Run times of the KCSC method with the CSC method.
The rest of this paper is organized as follows: In this section, we state some preliminary lemmas and Theorems. In
section 2, we offer an algorithmic structure of the CSC method and we implement the KCSC method for n-order linear
PDEs. In section 3, the error analysis of the mentioned methods CSC and KCSC are compared. In section 4, the
effectiveness of the KCSC method is illustrated by numerical examples and we fit the Run times of the mentioned
method with polynomial and exponential models. Also, by statistical tools, we compare these regression models and
we show that the Run times of the KCSC method have polynomial growth and the Run times of the CSC method
have exponential growth. The conclusion is stated in section 5.

Theorem 1.1. [17, Theorem 5.14] If the function u(x) has m + 1 continuous derivatives on [−1, 1] and uN (x) :=∑N
n=0 αnTn(x) be the Chebyshev series expansion of u(x), where

α0 =
1

π

∫ 1

−1

u(x)√
1− x2

dx, αn =
2

π

∫ 1

−1

Tn(x)u(x)√
1− x2

dx, n ≥ 1,

then

| u(x)− uN (x) |= O(N−m), for all x ∈ [−1, 1].

Theorem 1.2. [17, Theorem 5.7] If u(x) is continuous and either of bounded variation or satisfying a Dini-Lipschitz
condition on [−1, 1], then its Chebyshev series expansion is uniformly convergent.

In light of Theorems 1.1 and 1.2, it is worthwhile to mention that convergence rate of the spectral methods is
O(N−m).

Lemma 1.3 ([14]). If v(x) =
∑m

k=0 αkTk(x), then v′(x) =
∑m

k=0 αkT
′

k(x) =
∑m

k=0 α
(1)
k Tk(x) and v

′′
(x) =

∑m
k=0 αkT

′′

k (x) =∑m
k=0 α

(2)
k Tk(x). Assume that α := [α0 · · · αm]t, α(1) := [α

(1)
0 α

(1)
1 · · · α(1)

m ]t and α(2) := [α
(2)
0 α

(2)
1 · · · α(2)

m ]t. There-

fore, there exists derivative matrix D such that α(1) = Dα and α(2) = D2α, where

Dij =

 j − 1 i+ j is odd , j > i = 1,
2j − 2 i+ j is odd , j > i > 1,
0 other wise,

(D2)ij =


((j−1)2−(i−1)2)(j−1)

2 i+ j is even, j > i = 1,
((j − 1)2 − (i− 1)2)(j − 1) i+ j is even, j > i > 1,
0 other wise.

Similarly, we can define the Chebyshev derivative matrix of degree n and is denoted by Dn. Note that the general
form of the matrices D and Dn are presented in [8].

2. Algorithm and implementation of Chebyshev Spectral Collocation (CSC) Method for n-order
linear PDEs

In this section, we consider the following n-order linear PDEs in two dimensional variables (x, y) ∈ [a1, b1]× [a2, b2]
with boundary conditions

n1,n2∑
k,l=0

ak,l(x, y)
∂k+l

∂xk∂yl
u(x, y) = f(x, y), (2.1)
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
∂k−1u
∂xk−1 (a1, y) = gk−1,1(y), k = 1, 2, . . . ,

[
n1+1

2

]
.

∂k−1u
∂xk−1 (b1, y) = gk−1,2(y), k = 1, 2, . . . ,

[
n1

2

]
.

∂l−1u
∂yl−1 (x, a2) = hl,1(x), l = 1, 2, . . . ,

[
n2+1

2

]
.

∂l−1u
∂yl−1 (x, b2) = hl−1,2(x), l = 1, 2, . . . ,

[
n2

2

]
.

(2.2)

where n1 and n2 are the order of the partial derivatives of x and y, respectively and ak,l(x, y), f(x, y) ∈ Cn ([a1, b1]× [a2, b2]) ,
where n = n1 + n2. In special case for n1 = n2 = 2, these equations can be expressed in the following form:

a2,0(x, y)∂u
2

∂x2 + a1,1(x, y) ∂u2

∂x∂y + a0,2(x, y)∂u
2

∂y2 + a1,0(x, y)∂u∂x + a0,1(x, y)∂u∂y + a0,0(x, y)u = f(x, y), (2.3)

u(a1, y) = g0,1(y), u(b1, y) = g0,2(y), ∀y ∈ [a2, b2],

u(x, a2) = h0,1(x), u(x, b2) = h0,2(x), ∀x ∈ [a1, b1]. (2.4)

2.1. Chebyshev spectral collocation Method algorithm for n-order linear PDEs. Without loss of generality,
we assume that a1 = a2 = −1 and b1 = b2 = 1, because we can easily transform equation (2.1-2.2) into desirable
domain [−1, 1]× [−1, 1].

Let Rn = {(x1, x2, . . . , xn)t| xi ∈ R} and v(x, y) :=
∑m

i,j=0 γi,jTi(x)Tj(y) be an approximate solution of the above
PDEs equation. We fixed the following notations throughout this section:

T(t) := [T0(t) T1(t) · · ·Tm(t)]t ∈ Rm+1, ẽ := [(−1)0 − 1 · · · (−1)m]t ∈ Rm+1,

e := [1 1 · · · 1]t ∈ Rm+1, Γ := [γ0,0 γ0,1 · · · γ0,m | · · · | γm,0 γm,1 · · · γm,m]t ∈ R(m+1)2 .

By the following steps, we approximate the solution of n-order linear PDEs (2.1-2.2) by using two-dimensional
Chebyshev spectral collocation Method.

step 1: For a given m ∈ N, let v(x, y) =
∑m

i,j=0 γi,jTi(x)Tj(y). We compute the following partial derivative of

v(x, y)

∂k+lv(x,y)
∂xk∂yl =

∑m
i,j=0 γi,jT

(k)
i (x)T

(l)
j (y), k = 0, 1, . . . , n1, l = 0, 1, . . . , n2. (2.5)

Putting the relations (2.5) in equation (2.1), the following equation is obtained

m∑
i,j=0

n1,n2∑
k,l=0

ak,l(x, y)γi,jT
(k)
i (x)T

(l)
j (y) = f(x, y). (2.6)

step 2: Let {p1, . . . , pm+1} be the roots of Tm+1(x). By replacing (pi, pj),
1 ≤ i, j ≤ m + 1 in equation (2.6), the linear system WΓ = F is obtained, where W ∈ M(m+1)2 and

F ∈ R(m+1)2 .
step 3: By replacing v(x, y) =

∑m
i,j=0 γi,jTi(x)Tj(y) and putting the roots of Tm+1(x) in equations (2.2), the

linear system V Γ = G is obtained, where V ∈M(n1+n2)(m+1),(m+1)2 and G ∈ R(n1+n2)(m+1).
step 4: Let rank(V ) = r and {Vi1 , . . . ,Vir} be independent rows of V . We define A := [W1, . . . ,W(m+1)2−r,

Vi1 , . . . ,Vir ]t ∈ M(m+1)2 and b ∈ R(m+1)2 . By solving the linear system AΓ = b, the coefficients of v(x, y)
can be obtained.

2.2. Kronecker Implementation of Chebyshev Spectral Collocation (KCSC) method for n-order linear
PDEs. In this subsection, we present a Kronecker implementation of Chebyshev spectral collocation Method for
equations (2.1-2.2) in Theorems 2.1 and 2.2.
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Theorem 2.1. If v(x, y) =
∑m

i,j=0 γi,jTi(x)Tj(y) = Γt(T(x) ⊗ T(y)) and pi, i = 1, 2, . . . ,m + 1 are the roots of

Tm+1(x) and Mn1,n2(x, y) :=
∑n1,n2

k,l=0 ak,l
(x, y)(Dk ⊗Dl)(T(x)⊗T(y)), then Implementation of Kronecker Chebyshev Spectral Collocation (KCSC) method for
equation (2.1) is

ÂΓ = F ,

where

Â =
[
Mn1,n2

(p1, p1) . . . Mn1,n2
(p1, pm+1) . . . Mn1,n2

(pm+1, pm+1)
]t ∈M(m+1)2

and

F =
[
f(p1, p1) f(p1, p2) . . . f(p1, pm+1) f(p2, p1) . . . f(pm+1, pm+1)

]t ∈ R(m+1)2 .

Proof. By replacing v(x, y) =
∑m

i,j=0 γi,jTi(x)Tj(y) in the equation (2.1), we have

m∑
i,j=0

n1,n2∑
k,l=0

ak,l(x, y)γi,jT
(k)
i (x)T

(l)
j (y) =

n1,n2∑
k,l=0

ak,l(x, y)Γt(Dk ⊗Dl)(T(x)⊗T(y))

= Γt
n1,n2∑
k,l=0

ak,l(x, y)(Dk ⊗Dl)(T(x)⊗T(y)) = f(x, y).

Then

ΓtMn1,n2(x, y) = Mt
n1,n2

(x, y)Γ = f(x, y). (2.7)

By replacing the roots (pi, pj), i, j = 1, 2, ...,m+ 1, in the relation (2.7) the result holds. �

Theorem 2.2. If v(x, y) =
∑m

i,j=0 γi,jTi(x)Tj(y) = Γt(T(x) ⊗ T(y)) and pi, i = 1, 2, . . . ,m + 1 are the roots of

Tm+1(x), then the following system of linear equations is obtained by KCSC method of the boundary conditions in
equations (2.2).

ÃΓ = G, (2.8)

where

Ã =


Ã1

Ã2

Ã3

Ã4


t

∈M(n1+n2)(m+1),(m+1)2 , G =


G̃1

G̃2

G̃3

G̃4

 ∈ R(n1+n2)(m+1),

Ã1 =


Ã11

Ã21

...
Ã[

n1+1
2

]
1

 , Ãk1 =


(Dk−1 ⊗ I)(ẽ⊗ T (p1))

(Dk−1 ⊗ I)(ẽ⊗ T (p2))

...
(Dk−1 ⊗ I)(ẽ⊗ T (pm+1))

 , k = 1, 2, . . . ,

[
n1 + 1

2

]
.

G̃1 =


G̃11

G̃21

...
G̃[

n1+1
2

]
1

 , G̃k1 =


gk−1,1(p1)

gk−1,1(p2)

...
gk−1,1(pm+1)

 , k = 1, 2, . . . ,

[
n1 + 1

2

]
.

Ã2 =


Ã12

Ã22

...
Ã[n1

2 ]2

 , Ãk2 =


(Dk−1 ⊗ I)(e⊗ T (p1))

(Dk−1 ⊗ I)(e⊗ T (p2))
...

(Dk−1 ⊗ I)(e⊗ T (pm+1))

 , k = 1, 2, . . . ,
[n1

2

]
.
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G̃2 =


G̃12

G̃22

...

G̃[n1
2 ]2

 , G̃k2 =


gk−1,2(p1)
gk−1,2(p2)

...
gk−1,2(pm+1)

 , k = 1, 2, . . . ,
[n1

2

]
.

Ã3 =


Ã13

Ã23

...
Ã[

n2+1
2

]
3

 Ãl3 =


(I ⊗Dl−1)(T (p1) ⊗ ẽ)

(I ⊗Dl−1)(T (p2) ⊗ ẽ)

...
(I ⊗Dl−1)(T (pm+1) ⊗ ẽ)

 , l = 1, 2, . . . ,

[
n2 + 1

2

]
.

G̃3 =


G̃13

G̃23

...

G̃[n2+1
2 ]3

 , G̃l3 =


hl−1,1(p1)
hl−1,1(p2)

...
hl−1,1(pm+1)

 , l = 1, 2, . . . ,

[
n2 + 1

2

]
.

Ã4 =


Ã14

Ã24

...

Ã[n2
2 ]4

 , Ãl4 =


(I ⊗Dl−1)(T (p1)⊗ e)
(I ⊗Dl−1)(T (p2)⊗ e)

...
(I ⊗Dl−1)(T (pm+1)⊗ e)

 , l = 1, . . . ,
[n2

2

]
.

G̃4 =


G̃14

G̃24

...

G̃[
n2
2 ]4

 , G̃l4 =


hl−1,2(p1)
hl−1,2(p2)

...
hl−1,2(pm+1)

 , l = 1, 2, . . . ,
[n2

2

]
.

Proof. We will show that the rows of the left and right hand sides of the equation (2.8) are equal. First we prove

Ãk1Γ = Gk1. By replacing v(x, y) =
∑m

i,j=0 γi,jTi(x)Tj(y) = Γt(T(x) ⊗ T(y)) in the first boundary conditions of

equation (2.1), we obtain the following:

∂k−1v
∂xk−1 (−1, y) =

∑m
i,j=0 γ

(k−1,0)
i,j Ti(−1)Tj(y) =

∑m
i,j=0 γ

(k−1,0)
i,j (−1)iTj(y) = gk−1,1(y).

Therefore, v(−1, y) is equal to the following

(Γ(k−1,0))t[T0(y) · · ·Tm(y) | −T0(y) · · · − Tm(y) | · · · | (−1)mT0(y) · · · (−1)mTm(y)]t

= (Γ(k−1,0))t[(−1)0T (y) | (−1)1T (y) | · · · | (−1)mT (y)]t

= Γ([(−1)0 (−1)1 · · · (−1)m]t ⊗ T (y))(Dk−1 ⊗ I) = gk−1,1(y).

Then

Γt(ẽ⊗ T (y))(Dk−1 ⊗ I) = gk−1,1(y). (2.9)

By replacing the roots pi, i = 1, 2, ...,m + 1, in equation (2.9) and transposed of last system , Ãk1Γ = Gk1. By the
same argument as above for the other block rows, the result holds. �

In the following remark, computational complexity of KCSC and CSC methods are compared.

Remark 2.3. Let A ∈ Mm×n and B ∈ Mp×k. Then the number of operations to obtain A ⊗ B is denoted by
num(A ⊗ B) = mnpk. In special case if n = p, then the number of operations to obtain A × B is denoted by
num(A×B) = mnk+mk(n−1) = mk(2n−1). According to Theorem 2.1 and [26, relation (17)], for KCSC method, the

coefficient matrix Â ∈M(m+1)2 is obtained by (n1+n2)
(
(m+1)4+2(m+1)2

)
+(m+1)4−2(m+1)2 operations. But each



CMDE Vol. 10, No. 4, 2022, pp. 914-927 919

row of the coefficient matrix Â ∈M(m+1)2 in CSC method needs 3(n1 +n2 +1)(m+1)2 operations. Then the coefficient

matrix Â ∈M(m+1)2 in CSC method is obtained by (m+ 1)2 ×
(
3(n1 + n2 + 1)(m+ 1)2) =

(
3(n1 + n2 + 1)(m+ 1)4)

operations. Also by Theorem 2.2 and [26, relation (22)], the coefficient matrix Ã ∈ M(n1+n2)(m+1),(m+1)2 is obtained

by 12(m+ 1)4 − 2(m+ 1)2 and (n1 + n2)
(
3(m+ 1)4 − (m+ 1)3

)
operations in KCSC and CSC methods, respectively.

As a result, the computational complexity in KCSC method is less than CSC method.

The algorithm for the KCSC method is described in the following:

Algorithm 1 Coding algorithm for the KCSC method

Input: m ∈ N, {p1, . . . , pm+1} be the roots of Tm+1(x), the coefficients, the known functions of equation (2.1) and
equations (2.2).

1: Production of matrix system ÂΓ = F by using Theorem 2.1 .
2: Production of matrix system ÃΓ = G by using Theorem 2.2 .
3: Formation matrix system AΓ = b by using independent rows of systems ÂΓ = F and ÃΓ = G, in accordance
with step 4 in subsection 2.1 .
4: Calculate the coefficients Γ by solving the linear system AΓ = b.
Output: Approximate solution of equation (2.1).

3. Error analysis

In this section, the error analysis of the mentioned methods CSC and KCSC are compared. First, we state some
notations which will be used in the sequel. According to Theorems (2.1-2.2), if rank(Ã) = r and {Ãi1 , . . . , Ãir} are

independent rows of Ã. We define A := [Â1, . . . , Âm+1−r, Ãi1 , . . . , Ãir ]t ∈M(m+1)2 and b ∈ R(m+1)2 . By solving the
linear system AΓ = b, the coefficients γi,j of v(x, y) can be obtained.

Theorem 3.1. [2, Theorem 5.1.1] Let R = [−1, 1]× [−1, 1] and I = {(xi, yj) : 0 ≤ i ≤ N, 0 ≤ j ≤M} ∈ R is a set of

interpolation nodes. IN,Mu is the interpolating polynomial of u through the grid I. Assume that
∂N+1u

∂xN+1
and

∂M+1u

∂yM+1

exist and continuous for all (x, y) ∈ R . Then, for any (x, y) ∈ R,

|u(x, y)− IN,Mu(x, y)| ≤ |ωN (x)|
(N + 1)!

max−1≤x,y≤1

∣∣∣∣∂N+1u(x, y)

∂xN+1

∣∣∣∣
+ ΛN (x)

|ωM (y)|
(M + 1)!

max−1≤x,y≤1

∣∣∣∣∂M+1u(x, y)

∂yM+1

∣∣∣∣ ,
where
ΛN (x) =

∑N
i=0 |Li,N (x)|, ωN (x) =

∏N
i=0(x− xi) and ωM (y) =

∏M
i=0(y − yi).

Theorem 3.2. Let the exact solution u(x, y) of Equations (2.1-2.2) be sufficiently smooth and let v(x, y) =
∑m

i,j=0 γi,j
Ti(x)Tj(y). Then for any matrix norm ‖ · ‖, the following holds. (For abbreviation, the upper bound in the right hans
side is denoted by U1

m).

|u(x, y)− v(x, y)| ≤‖ Km,m(x, y) ‖ + ‖ T (x) ‖‖ T (y) ‖‖ 4b ‖‖ A−1 ‖= U1
m.

Proof. By Theorem 3.1, we can write u(x, y) = Im,mu(x, y) + Km,m(x, y), where Im,mu = Γ̃t(T(x) ⊗ T(y)) is the
interpolating polynomial of u and

Km,mu(x, y) =
ωm(x)

(m+ 1)!

∂m+1u(ξ, y)

∂xm+1
+ Λm(x)

ωm(y)

(m+ 1)!

∂m+1u(x, η)

∂ym+1
, −1 ≤ ξ, η ≤ 1.

Since u(x, y) is the exact solution to Equations (2.1-2.2), coefficients of Chebyshev expansion u(x, y) apply to AΓ = b.

Similarly, coefficients v(x, y) apply to AΓ̃ = b +4b. Thus

Γ− Γ̃ = A−14b.
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On the other hand

|u(x, y)− v(x, y)| ≤ |u(x, y)− Im,mu(x, y)|+ |v(x, y)− Im,mu(x, y)|.

The first term on the right-hand side can be bounded by Theorem 3.1. So it is enough, we find an upper bound for
the second term. Thus

|v(x, y)− Im,mu(x, y)| = | (T(x)⊗T(y))Γ− (T(x)⊗T(y))Γ̃ |
≤ ‖ T(x)⊗T(y) ‖‖ Γ− Γ̃ ‖≤‖ T(x)⊗T(y) ‖‖ 4b ‖‖ A−1 ‖,

According to relation ‖ A⊗B ‖≤‖ A ‖‖ B ‖ for matrix norms, the proof is complete. �

In the following theorem, Yuksel presented an error upper bound for CSC method.

Theorem 3.3. [26, Theorem 5.1] Let v(x, y) be the Chebyshev series solution and u(x, y) be the exact solution of
Equations 2.3 -2.4, if u(x, y) is sufficiently smooth, then

|u(x, y)− v(x, y)| ≤‖ Km,m(x, y) ‖ + ‖ T(x) ‖‖ Q(y) ‖‖ 4b ‖‖ A−1 ‖= U2
m,

where

Q(y) = dig(T(y),T(y), . . . ,T(y)) ∈M(m+1),(m+1)2 . (3.1)

Remark 3.4. Let X ∈ Rn and A = diag(Xt, Xt, ..., Xt) ∈Mn,n2 . Then easy computation shows that ‖ A ‖1=‖ X ‖∞,
‖ A ‖F =

√
n ‖ X ‖F and ‖ A ‖∞=‖ X ‖1, where

‖ A ‖∞= max{
n∑

j=1

| ai,j |, i = 1, 2, ..., n}, ‖ X ‖∞= max{| xi |, i = 1, 2, ..., n},

‖ A ‖1= max{
n∑

i=1

| ai,j |, j = 1, 2, ..., n2}, ‖ X ‖1=

n∑
i=1

| xi |,

‖ A ‖F =

√√√√ n∑
i,j=1

| a2
i,j |, ‖ X ‖F =

√√√√ n∑
i=1

| x2
i | .

Moreover, if X ∈ Rn has at least two non-zero components, then ‖ X ‖∞<‖ X ‖1=‖ A ‖∞ .

Now, in the following we will compare the new upper bound in Theorem 3.2 with the upper bound presented in
Theorem 3.3.

Theorem 3.5. Let U1
m and U2

m be the error upper bounds in Theorem 3.2 and Theorem 3.3, respectively. If we consider
the norm ‖ · ‖ in Theorems 3.2-3.3 as infinity norm ‖ · ‖∞ or Frobenius norm ‖ · ‖F , then U1

m < U2
m.

Proof. Since in general T (y) has at least two nonzero components, by choosing X = T (y) and A = Q(y) in Remark
3.4, we obtain that ‖ T (y) ‖∞<‖ Q(y) ‖∞ and ‖ Q(y) ‖F =

√
n ‖ T (y) ‖F . Therefore, the result holds. �

4. Numerical results

In this section, by calculating the CPU times and Run times for three examples, we show that the CPU times
and Run times of KCSC method is significantly less than the CPU times and Run times of CSC method. Also, by
statistical tools, we show that the Run times of the KCSC method has polynomial growth and the Run times of
the CSC method has exponential growth. All computations in the following examples are performed using Matlab
software ”2014a” and a system with the specifications: Intel(R) Core(TM) i5 - 4200U and RAM: 8.00 GB.
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Figure 1. Absolute errors of Example 4.1

4.1. Numerical examples. The following examples show that although the absolute errors of the KCSC and CSC
methods are the same up to six digits, but the CPU times and Run times of KCSC method is significantly less than
the CPU and Run times of CSC method. In Tables 1-3, in the first and second columns, the CPU times of the
mentioned methods for m = 4, . . . , 15 are computed, in the third and fourth columns, the Run times and in the fifth
and sixth columns, the absolute errors of mentioned methods for m = 4, . . . , 15 are presented. Also, we depict the
absolute errors in Figures 1, 3, 5, and the CPU times of these implementations are compared in Figures 2(a), 4(a),
6(a). Moreover, the Run times of these implementations are compared in the Figures 2(b), 4(b) and 6(b). Note that,
to compute the CPU times and Run times of Tables 1 - 3, the Matlab codes were compiled 10 times and the results
were averaged.

Example 4.1. We consider the following Poisson’s equation with exact solution u(x, y) = sin(πx)sin(πy).

uxx + uyy = −2π2sin(πx)sin(πy),

u(x,−1) = u(x, 1) = 0, −1 ≤ x ≤ 1,

u(−1, y) = u(1, y) = 0, −1 ≤ y ≤ 1.

Table 1. Absolute errors, CPU and Run times for Example 4.1

m CPU times of CPU times of Run times of Run times of Absolute error of Absolute error of
CSC method KCSC method CSC method KCSC method CSC method KCSC method

4 2.1703× 101 9.0313× 100 5.4× 101 4.2× 101 7× 10−1 7× 10−1

5 5.3609× 101 1.7516× 101 1.68× 102 1.33× 102 2.1× 10−1 2.1× 10−1

6 2.0342× 102 9.9953× 101 2.22× 102 1.41× 102 3.2× 10−2 3.2× 10−2

7 2.4925× 102 1.0927× 102 4.43× 102 2.41× 102 1.25× 10−2 1.25× 10−2

8 5.6116× 102 1.2503× 102 7.51× 102 4.28× 102 6.2× 10−4 6.2× 10−4

9 1.0861× 103 2.6033× 102 1.45× 103 8.71× 102 3.75× 10−5 3.75× 10−5

10 1.9926× 103 6.6877× 102 1.846× 103 8.81× 102 3.8× 10−7 3.8× 10−7

...
...

...
...

...
...

...

15 1.1634× 104 2.6040× 103 1.2202× 104 4.733× 103 3.2× 10−9 3.2× 10−9

Example 4.2. We consider the following PDE with exact solution u(x, y) = ex+2y.

uxx + uyy + ux + uy + u = 9ex+2y,

u(x,−1) = ex−2, u(x, 1) = ex+2, −1 ≤ x ≤ 1,

u(−1, y) = e−1+2y, u(1, y) = e1+2y, −1 ≤ y ≤ 1.
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Figure 2. CPU times (a) and Run times (b) of Example 4.1

Table 2. Absolute errors, CPU and Run times for Example 4.2

m CPU times of CPU times of Run times of Run times of Absolute error of Absolute error of
CSC method KCSC method CSC method KCSC method CSC method KCSC method

4 5.8890× 101 1.8093× 101 5.1× 101 4.0× 101 7.8× 10−1 7.8× 10−1

5 2.0034× 102 6.3609× 101 1.64× 102 1.31× 102 1.8× 10−1 1.8× 10−1

6 2.7384× 102 9.7640× 101 2.2× 102 1.4× 102 3.5× 10−2 3.5× 10−2

7 5.2176× 102 1.1245× 102 4.14× 102 2.38× 102 5.8× 10−3 5.8× 10−3

8 9.7975× 102 2.3979× 102 7.46× 102 4.25× 102 8× 10−4 8× 10−4

9 1.9235× 103 6.5723× 102 1.442× 103 8.66× 102 9.5× 10−5 9.5× 10−5

10 2.5267× 103 4.9076× 102 1.840× 103 8.78× 102 1.02× 10−5 1.02× 10−5

...
...

...
...

...
...

...

15 1.2087× 104 2.5949× 103 1.2189× 104 4.722× 103 1.25× 10−9 1.25× 10−9

Figure 3. Absolute errors of Example 4.2
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Figure 4. CPU times (a) and Run times (b) of Example 4.2

Example 4.3. We consider the following PDE with exact solution u(x, y) = exsiny.

uxx − uyy + (x+ y)ux − x2uy + u = (3 + x+ y)exsiny − x2excosy,

u(x,−1) = exsin(−1), u(x, 1) = exsin(1), −1 ≤ x ≤ 1,

u(−1, y) = e−1siny, u(1, y) = e1siny, −1 ≤ y ≤ 1.

Table 3. Absolute errors, CPU and Run times for Example 4.3

m CPU times of CPU times of Run times of Run times of Absolute error of Absolute error of
CSC method KCSC method CSC method KCSC method CSC method KCSC method

4 5.489× 101 1.8109× 101 6.5× 100 5.4× 101 2× 10−2 2× 10−2

5 2.0782× 102 1.0203× 102 1.89× 102 1.52× 102 1.2× 10−2 2.1× 10−1

6 2.8594× 102 1.1175× 102 2.56× 102 1.69× 102 2× 10−3 2× 10−3

7 5.4670× 102 1.3178× 102 4.40× 102 2.75× 102 4× 10−5 4× 10−5

8 1.0353× 103 3.0967× 102 8.1× 102 4.79× 102 4.2× 10−6 4.2× 10−6

9 2.016× 103 5.9094× 102 1.323× 103 9.03× 102 1.9× 10−7 3.75× 10−5

10 2.6× 103 7.7761× 102 1.94× 103 9.09× 102 1.8× 10−7 1.8× 10−7

...
...

...
...

...
...

...

15 1.3383× 104 3.173× 103 1.2415× 104 5.001× 103 3.1× 10−8 3.1× 10−8
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Figure 6. CPU times (a) and Run times (b) of Example 4.3
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Figure 5. Absolute errors of Example 4.3

Comparison of the Run times obtained in the above three examples show that the Run times of KCSC method has
much lower than Run times of CSC method.

In the last part of this section, in the Tables 4 and 5, for examples 4.1-4.3, the error bounds U1
m and U2

m for infinity
norm and Frobenius norm are computed , respectively.

Table 4. Error upper bounds U1
m and U2

m(infinity norm)

m U1
m of U2

m of U1
m of U2

m U1
m of U2

m of
Example 4.1 Example 4.1 Example 4.2 Example 4.2 Example 4.3 Example 4.3

5 1.7213 10.3088 1.2571 7.4176 1.7865 10.6690

10 1.3244 10.5415 1.0234 11.0554 1.2357 13.4947

15 0.9885 15.8025 0.8868 13.9008 1.0160 16.1255

Table 5. Error upper bounds U1
m and U2

m( Frobenius norm)

m U1
m of U2

m of U1
m of U2

m U1
m of U2

m of
Example 4.1 Example 4.1 Example 4.2 Example 4.2 Example 4.3 Example 4.3

5 16.2538 36.8880 14.1321 29.2573 15.1744 35.2773

10 5.3027 16.7658 4.1278 13.2728 4.8752 15.2119

15 0.3759 1.4533 0.2926 1.4125 0.3275 1.3912

Remark 4.4. Note that error upper bound U1
m for KCSC method in Theorem 3.2 can be used for n-order linear

PDEs, while error upper bound U2
m for CSC method in Theorem 3.3 can only be used for second-order linear PDEs.

Moreover, the numerical results of Table 4 show that, the sequence {U1
m} is decreasing while the sequence {U2

m} is an
increasing sequence. But the numerical results of Table 5 show that, the sequences {U1

m} and {U2
m} are decreasing.

4.2. Statistical results. Regression is a technique for determining the statistical relationship between two or more
variables. Regression is primarily used for prediction and causal inference[24].
Let ŷi indicates a prediction of yi on the basis of x = xi by regression model for i = 1, 2, ..., n, we define

SSE =

n∑
i=1

(yi − ŷi)2, SST =

n∑
i=1

(yi − ȳ)2, SSR = SST − SSE =

n∑
i=1

(ŷi − ȳ)2,

R2 =
SSR

SST
= 1− SSE

SST
, RMSE =

√
SSE

n
.
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Root Mean Square Error (RMSE) is the standard deviation of the residuals. Residuals are a measure of how far
from the regression data points are, RMSE is a measure of how spread out these residuals are. R2 is the proportion
of the variance in the dependent variable that is predictable from the independent variable(s). R2 has the useful
property that its scale is intuitive: it ranges from zero to one, with zero indicating that the proposed model does not
improve prediction over the mean model and one indicating perfect prediction [11, 24]. In this section, by regression
techniques for the examples in the previous section, we fit the Run times for m = 4, 5, ..., 15 of the mentioned methods
by polynomial and exponential models. Then by statistical tools, we compare these regression models and we show
that the Run times of KCSC method is much less than the CSC method.

4.2.1. Statistical results of Example 4.1. In this subsection statistical results related to Example 4.1 are studied. We
compute regression models for the Run times of the mentioned methods, then by using the R2 and RMSE tools, we
find the best regression for the Run times. You can see the results in Tables 6-7.

Table 6. Regression equations of KCSC method for Example 4.1
Type of Equation Value RMSE for Value R2 for

regression KCSC method KCSC method

poly1 p1(x) = 1002x− 6911 3265.0 0.7117

poly2 p2(x) = 122.4x2 − 1814x+ 5985 1162.0 0.9635

poly3 p3(x) = 9.971x3 − 221.6x2 + 1661x− 3647 441.8 0.9947

poly4 p4(x) = .536x4 − 14.68x3 + 167x2 − 755.2x + 1164 360.5 0.9965

poly6 p6(x) = −.01173x6 + .7991x5 − 20.88x4 + 271.6x3 − 1822x2 + 5961x− 7350 378.1 0.9961

exponential exp(x) = 63.3e.2914x 419.1 0.9953

Table 7. Regression equations of CSC method for Example 4.1
Type of Equation Value RMSE for Value R2 for

regression CSC method CSC method

poly1 p1(x) = 2963x− 21280 11688.0 0.631

poly2 p2(x) = 416.7x2 − 6620x+ 22610 5775.0 0.9097

poly3 p3(x) = 45.26x3 − 1145x2 + 9151x− 21110 3089.0 0.9742

poly4 p4(x) = 5.003x4 − 184.9x3 + 2483x2 − 13400x+ 23800 1962.0 0.9896

poly6 p6(x) = .01124x6 − 7.063x5 + 176.1x4 − 2196x3 + 14320x2 − 45730x+ 55380 1928.5 0.9899

exponential exp(x) = 39.33e.3749x 1645.0 0.9927

4.2.2. Statistical results of Example 4.2. In this subsection statistical results related to Example 4.2 are studied. We
compute regression models for the Run times of the mentioned methods, then by using the R2 and RMSE tools, we
find the best regression for the Run times. You can see the results in Tables 8-9.

Table 8. Regression equations of KCSC method for Example 4.2
Type of Equation Value RMSE for Value R2 for

regression KCSC method KCSC method

poly1 p1(x) = 1001x− 6910 3267.0 0.7112

poly2 p2(x) = 122.4x2 − 1814x+ 5984 1163.0 0.9634

poly3 p3(x) = 9.974x3 − 221.7x2 + 1662x− 3650 442.2 0.9947

poly4 p4(x) = .5362x4 − 14.69x3 + 167.1x2 − 755.6x + 1163 360.9 0.9965

poly6 p6(x) = −.01173x6 + .7988x5 − 20.88x4 + 271.6x3 − 1822x2 + 5964x− 7357 380.9 0.9961

exponential exp(x) = 62.98e.2916x 419.8 0.9952

Table 9. Regression equations of CSC method for Example 4.2
Type of Equation Value RMSE for Value R2 for

regression CSC method CSC method

poly1 p1(x) = 2963x− 21280 11533.0 0.698

poly2 p2(x) = 416.6x2 − 6620x+ 22600 5784.0 0.9094

poly3 p3(x) = 45.24x3 − 11.14x2 + 9145x− 21100 3089.0 0.9742

poly4 p4(x) = 5.005x4 − 185x3 + 2484x2 − 13420x+ 23830 1968.0 0.9895

poly6 p6(x) = .1122x6 − 7.049x5 + 175.7x4 − 2193x3 + 14280x2 − 45610x+ 552200 4251 0.9511

exponential exp(x) = 39.19e.3751x 1645.0 0.9927
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4.2.3. Statistical results of Example 4.3. In this subsection statistical results related to Example 4.3 are studied. We
compute regression models for the Run times of the mentioned methods, then by using the R2 and RMSE tools, we
find the best regression for the Run times. You can see the results in Tables 10-11.

Table 10. Regression equations of KCSC method for Example 4.3
Type of Equation Value RMSE for Value R2 for

regression KCSC method KCSC method

poly1 p1(x) = 1049x− 7270 3488 0.7035

poly2 p2(x) = 129.9x2 − 1938x+ 6441 1308.0 0.9583

poly3 p3(x) = 11.13x3 − 254.1x2 + 1941x− 4312 519.3 0.9934

poly4 p4(x) = .7047x4 − 21.28x3 + 256.7x2 − 1236x + 2013 395.9 0.9962

poly6 p6(x) = −.01303x6 + .9079x5 − 24.25x4 + 321.6x3 − 2197x2 + 7309x− 9137 432 0.995

exponential exp(x) = 59.68e.2972x 427.2 0.9956

Table 11. Regression equations of CSC method for Example 4.3
Type of Equation Value RMSE for Value R2 for

regression CSC method CSC method

poly1 p1(x) = 2988x− 21420 11700.0 0.6338

poly2 p2(x) = 418.1x2 − 6629x+ 22620 5760.0 0.9113

poly3 p3(x) = 45.1x3 − 1138x2 + 9088x− 20950 3086.0 0.9745

poly4 p4(x) = 4.989x4 − 184.4x3 + 2479x2 − 13400x+ 23840 1965.0 0.9897

poly6 p6(x) = .1115x6 − 6.995x5 + 174.1x4 − 2167x3 + 14090x2 − 44910x+ 54290 4239.5 0.9519

exponential exp(x) = 42e.3719x 1670.0 0.9925

5. Conclusion

The spectral method is one of the numerical methods of exponential order with a high convergence rate. But its
implementation on PDEs is too complicated. In this note, we implement Kronecker Chebyshev Spectral Collocation
(KCSC) method for n-order linear PDEs and we show that the computational complexity of the KCSC method is
less than that of the CSC method. By statistical tools on three examples, we show that the best regression model
for Run times in the CSC method is exponential and the best regression model for Run times in the KCSC method
is fourth-degree polynomial. Moreover, comparing the CPU and Run times of the proposed methods, show that the
CPU and Run times of the KCSC method are significantly less than the CSC method. Also, for the KCSC method,
provide an error upper bound and for some matrix norms, we show that this error upper bound is better than the
Previous error upper bound. According to the structure and implementation of the KCSC method, it is possible to
implement the KCSC method for semi-linear and nonlinear equations. Additionally, combining the KCSC method
with other numerical methods (finite difference method or Crank Nicolson method) can greatly reduce computational
complexity.
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