- [1] S. Akbarpour, A. Shidfar, and H. Saberinajafi, A Shifted Chebyshev-Tau method for finding a time-dependent heat source in heat equation, Comput. Methods for Differ. Equations, 8(1) (2020), 1-13.
- [2] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Univ. Press, New York, 1997.
- [3] A. G. Atta, W. M. A. Elhameed, and Y. H. Youssri, Shifted fifth-kind Chebyshev Galerkin treatment for linear hyperbolic first-order partial differential equations, Appl. Numerical Math., 167 (2021), 237-256.
- [4] I. Celik, Collocation method and residual correction using Chebyshev series, Appl. Math. Comput., 174 (2006), 910-920.
- [5] M. Dehghan and M. Lakestani, The use of Chebyshev cardinal functions for solution of the second-order one- dimensional telegraph equation, Num. Methods for Partial Differ. Equations, 25(4) (2009), 931-938.
- [6] W. M. A. Elhameed and Y. H. Youssri, New formulas of the high-order derivatives of fifth-kind Chebyshev polyno- mials: Spectral solution of the convectiondiffusion equation, Num. Methods for Partial. Differ. Equations, (2021).
- [7] W. M. A. Elhameed, J. A. Tenreiro Machado, and Y. H. Youssri, Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations, Comput. Methods for Differ. Equations, 2(3) (2014), 171-185.
- [8] W. M. A. Elhameed, Y. Youssri, and E. H. Doha, High-order finite element methods for time-fractional partial differential equations , Comput. Methods for Differ. Equations, 2(3) (2014), 171-185.
- [9] G. Evans, J. Blackledge, and P. Yardley, Analytic Methods for Partial Differential Equations, Springer, 1999.
- [10] K. Goyal and M. Mehra, Fast diffusion wavelet method for partial differential equations. Appl. Math. Mod., 40 (2016), 5000-5025.
- [11] A. S. Hadi, Regression Analysis By Example, WILEY, New Jersey, 2012.
- [12] D. V. Hutton, Fundamentals of finite element analysis, Elizabeth A .Jones (2004) 721-732.
- [13] Y. Jianga and J. Ma, High-order finite element methods for time-fractional partial differential equations, A Math. Journal, (2004), 1-32.
- [14] C. Johnson and R. A. Horn, Matrix Analysis, Cambridge Univ. Press, 2013.
- [15] D. Johnson, Chebyshev polynomial in the Tau spectral methods and applications to eigenvalue problems, National Aeronautics and Space Administration, 1996.
- [16] J. Kevorkian, Partial Differential Equations: Analytical Solution Techniques, Springer, 1999.
- [17] J. Mason and C. Handscomb, Chebyshev polynomials, CRC Press, 2013.
- [18] M. Izadi and M. Afshar, Solving the Basset equation via Chebyshev collocation and LDG methods, Journal of Math. Mod., 9 (2021), 61-79.
- [19] M. Lakestani and M. Dehghan, Numerical solution of fourth-order integro-differential equations using Chebyshev cardinal functions, Inter. Journal of Com. Math., 87(6) (2008), 1389-1394.
- [20] M. Lakestani and M. Dehghan, The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement, Journal of Comput. App. Math., 235(3) (2020), 669-678.
- [21] A. B. Orovio, V. M. P. Garcia, and F. H. Fenton, Spectral Methods for Partial Differential Equations in Irregular Domains: The Spectral Smoothed Boundary Method, SIAM Journal on Scientific Computing, 28(3) (2006), 886- 900.
- [22] P. Pedersen, New Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultra- spherical Operational Matrices of Derivatives, Differ. and Integral Equ., (1999), 721-732.
- [23] M. Pourbabaee and A. Saadatmandi, Collocation method based on Chebyshev polynomials for solving distributed order fractional differential equations, Comput. Methods for Differ. Equations, 9(3) (2021), 858-873.
- [24] J. O. Rawlings, S. G. Pantula, and D. K. Dickey, Applied Regression Analysis, Springer, 1998.
- [25] C. K. San, Chebyshev polynomial solutions of second-order linear partial differential equations, Appl. Math. Comput., 134 (2003), 109-124.
- [26] G. Yuksel, O. R. Isik, and M. Sezer, Error analysis of the Chebyshev collocation method for linear second order partial differential equations, Internat. Journal of Comput.Math., 43 (2015), 2261-2268.
- [27] Y. H. Youssri, W. M. A. Elhameed, and M. Abdelhakem, A robust spectral treatment of a class of initial value problems using modified Chebyshev polynomials, Math. Methods in the Appl. Sciences, 44(11) (2021), 9224-9236.
- [28] Y. H. Youssri and R. M. Hafez, Chebyshev collocation treatment of VolterraFredholm integral equation with error analysis, Arabian Journal of Math., 9 (2020), 471-480.
|