تعداد نشریات | 44 |
تعداد شمارهها | 1,298 |
تعداد مقالات | 15,883 |
تعداد مشاهده مقاله | 52,116,581 |
تعداد دریافت فایل اصل مقاله | 14,887,930 |
Prediction of Chlorophyll Content of Tomato Plant by Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System | ||
مکانیزاسیون کشاورزی | ||
دوره 6، شماره 3، مهر 1400، صفحه 59-65 اصل مقاله (941.38 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jam.2021.13936 | ||
نویسندگان | ||
ولی رسولی شربیانی* 1؛ اسما کیسالایی1؛ ابراهیم تقی نژاد2 | ||
1گروه مهندسی بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی | ||
2گروه مهندسی فناوری کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی | ||
چکیده | ||
Abstract Approximately three-quarters of harvested tomatoes are freshly used. Good quality is an important factor in distributing of fresh tomato. Chlorophyll is the green chemicals to provide required food of plants and ensure plant growth and productivity. The main function of chlorophyll is to absorb blue and red lights and perform photosynthesis. In recent years, the tendency to use of prediction methods such as soft computing and artificial intelligence for growth of plans has increased. The main aim of this study was to investigate the relationship between height and chlorophyll content in the leaves of tomato plants using modeling and predicting techniques and compare the accuracy of these methods. In this study, some cultivated plants of tomato were randomly selected for height and SPAD measurements. The results showed the relationship between Chlorophyll content and height of plants was very low (R2 = 0.276). However using the modelling of ANN and ANFIS improved the prediction power up to (R2=0.982 and 0.913), respectively. | ||
کلیدواژهها | ||
Keywords: ANFIS؛ Chlorophyll Content؛ Modeling؛ Neural Networks؛ Tomato | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 335 تعداد دریافت فایل اصل مقاله: 269 |