
تعداد نشریات | 44 |
تعداد شمارهها | 1,341 |
تعداد مقالات | 16,474 |
تعداد مشاهده مقاله | 53,511,015 |
تعداد دریافت فایل اصل مقاله | 16,028,099 |
بررسی و مقایسه تغییرات رایحه، رنگ و ویتامین ث برگه های خشک شده پرتقال در خشک کردن فریز درایر و هوای داغ | ||
نشریه مکانیزاسیون کشاورزی | ||
دوره 6، شماره 3، مهر 1400، صفحه 41-47 اصل مقاله (1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jam.2021.13912 | ||
نویسندگان | ||
مازیار روشن مقدم1؛ رضا امیری چایجان* 1؛ ناهید عقیلی ناطق2 | ||
1گروه مهندسی مکانیک بیوسیستم ، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
2گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی سنقر، دانشگاه رازی، کرمانشاه، ایران | ||
چکیده | ||
در این پژوهش اثر خشک کردن با استفاده از فریز درایر و هوای داغ بر رایحه، مقدار ویتامین ث و تغییر رنگ برگه های پرتقال مطالعه شد. فرآیند خشک کردن فریزدرایر در دمای 50- درجه سلسیوس و هوای داغ در دمای 60 درجه سلسیوس صورت گرفت. نتایج نشان داد برگه های خشک شده در خشک کن فریز درایر، کیفیت رنگ و رایحه ای مشابه با ورقه های پرتقال تازه داشته (پرتقال تازه 48/79L*=، 17/3a*= و 25/44b*= و فریز درایر 26/82L*=، 71/2 a*= و 68/50b*=) ولی در مورد هوای داغ، کیفیت رنگ (09/58L*=، 78/10 a*= و 51/45b*= ) کاهش پیدا کرد و به سمت قهوه ای شدن تمایل یافت. بیشترین پاسخ حسگرهای بویایی در پرتقال تازه، خشک کن فریز درایر و خشک کن هوای داغ به ترتیبMQ9 ، MQ7 و MQ3 و کمترین پاسخ حسگرهای بویایی در هر سه روش MQ6 بود. تفاوت بیشترین پاسخ حسگرها نشان از تغییر عطر محصول در حین خشک کردن است. مقدار ویتامین ث در دو روش فریز درایر (mg/100g4/902) و هوای داغ (mg/100g6/956) نسبت به پرتقال تازه (mg/100g3/1001) کاهش داشته است که در خشک کن هوای داغ کاهش غلظت کمتر بود. | ||
کلیدواژهها | ||
خشک کن فریز درایر؛ هوای داغ؛ ماشین بویایی؛ ویتامین ث؛ شاخص رنگ | ||
مراجع | ||
Adibzadeh, A., Zaki Dizaji, H., Aghili Nategh. N. (2020). Feasibility of Detecting Sugarcane Varieties by Electronic Nose Technique in Sugarcane Syrup. Journal of Food Process Engineering. 51(1): 1-10. (In Persian). Aghili Nategh, N., Dalvand, M. J., Anvar, A. (2020). Detection of toxic and non‑toxic sweet cherries at different degrees of maturity using an electronic nose. Journal of Food Measurement and Characterization. Springer. Aghili Nategh, N., Rafiee, S., Hosseinpor, S., Omid, M., Mohtasebi, S,S. (2016). Real-time color change monitoring of apple slices using image processing during intermittent microwave convective drying. Food Science and Technology International. 22(7): 634-646. Ahmadi Ghavidelan, M., Amiri Chayjan, R. (2015). Optimization of hazelnut kernel drying in an infrared dryer with microwave pretreatment using response surface methodology. Iranian Food Science and Technology. 14(64): 165-178. Arslan, D., and Özcan, M. (2011). Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters Secado de rodajas de tomate: cambios en cinéticos del secado, contenido en minerales, actividad antioxidante y parámetros de color. CyTA-Journal of Food. 9(3): 229-236. Chen, X.D. (2008). Food drying fundamentals. In: Chen, X.D., Mujumdar, A.S. (Eds.). Drying Technologies in Food Processing. Blackwell Publishing, pp. 1–3. Ekow, A. E., Haile, M. A., John, O. W. U. S. U., and Narku, E. F. (2013). Microwave-vacuum drying effect on drying kinetics, lycopene and ascorbic acid content of tomato slices. Journal of Stored Product and Postharvest. 4(1): 11-22. Fellows, P.J. (2009). Food processing technology: principles and practice. Elsevier. Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum microwave methods. Journal of Food Engineering. 98(4): 461-470. Franco, P., Jorge, L., Domingo, M., Pedro, M.(2006). Development of a computer vision system to measure the color of potato chips. Food Research International. 39(10): 1092-1098. Ghasemi, A., and Chayjan, R. A. (2019). Numerical simulation of vitamin C degradation during dehydration process of fresh tomatoes. Journal of Food Process Engineering. 42(6): 13189. Ghasemi-Varnamkhasti, M., and Aghbashlo, M. (2014). Electronic nose and electronic mucosa as innovative instruments for real-time monitoring of food dryers. Trends in Food Science and Technology. 38(2): 158-166. Guclu, G., Keser, D., Kelebek, H., Keskin, M., Sekerli, Y.E., Soysal,Y., Selli, S. (2020). Impact of production and drying methods on the volatile and phenolic characteristics of fresh and powdered sweet red peppers. Food Chem. 338: 128-129. Heidarbeigi, K., Mohtasebi, S.S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. Int. J. Food Prop. 18(7): 1391-1401. Hui, G., Jin, J., Deng, S., Ye, X., Zhao, M., Wang, M., Ye, D. (2015). Winter jujube (Zizyphus jujuba Mill.) quality forecasting method based on electronic nose. Food Chemistry. 170(1): 484- 491. Jin, X., Oliviero, T., van der Sman, R.G.M., Verkerk, R., Dekker, M. (2014). Impact of different drying trajectories on degradation of nutritional compounds in broccoli (Brassica oleracea var. italica). LWT - Food Science and Technology. 59(1): 189-195. Kiani, S., Minaei, S., Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement. 124: 447–452, Kiani, S., Minaei, S., Ghasemi-Varnamkhasti, M. (2016). portable electronic nose as an expert system for aroma-based classification of saffron. Chemo metrics and Intelligent Laboratory Systems. 156(15): 148-156. Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., Cadwallader, K.R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chem. 291(1): 49–58, Lemus-Mondaca, R., Ah-Hen, K., ega-Gálvez, A., Honores, C. and Moraga, N.O. (2016). Stevia rebaudiana leaves: effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant foods for human nutrition. 71(1): 49-56. Pei, F., Yang, W., Ma, N., Fang, Y., Zhao, L., An, X., Xin, Z., Hu, Q. (2016). Effect of the two drying approaches on the volatile profiles of button mushroom (Agaricus bisporus) by headspace GC–MS and electronic nose. LWT Food Sci. Technol. 72: 343–350. Purkayastha, M. D., Nath, A., Deka, B. C., and Mahanta, C. L. (2013). Thin layer drying of tomato slices. Journal of food science and technology. 50(4): 642-653. Sanaeifar, A., Mohtasebi, S., Ghasemi Varnamkhasti, M., Ahmadi, H. (2015). Design, manufacture and performance evaluation of olfactory machine (electronic nose) based on metal oxide semiconductor (MOS) sensors to monitor banana ripening. Journal of Agricultural Machinery. 5(1): 111-121. Sanchez-Reinoso, Z., Osorio, C., Herrera, A. (2017). Effect of microencapsulation by spray drying on cocoa aroma compounds and physicochemical characterization of microencapsulates. Powder Technol. 318: 110–119. Spínola, V., Llorent-Martínez, E.J., and Castilho, P.C. (2014). Determination of vitamin C in foods: Current state of method validation. Journal of Chromatography A. 1369(21): 2-17. Wei, Z., Wang, J., & Zhang, W. (2015). Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods. Food Chemistry. 177(15): 89-96. Wiktor, A., Nowacka, M., Dadan, M., Rybak, K., Lojkowski, W., Chudoba, T., Witrowa- Rajchert, D. (2016). The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Dry. Technol. 34(11): 1286–1296. Yousuf, B., Gul, K., Wani, A.A. and Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Critical reviews in food science and nutrition. 56(13): 2223-2230. Zhang, W., Pan, L., Zhao, X., & Tu, K. (2016). A study on soluble solids content assessment using electronic nose: persimmon fruit picked on different dates. International Journal of Food Properties. 19(1): 53-62. | ||
آمار تعداد مشاهده مقاله: 416 تعداد دریافت فایل اصل مقاله: 341 |