تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,425 |
تعداد دریافت فایل اصل مقاله | 15,216,977 |
Karyological studies and chromosome variation among Iranian endemic Allium species (Amaryllidaceae) | ||
Journal of Plant Physiology and Breeding | ||
دوره 11، شماره 1، شهریور 2021، صفحه 97-108 اصل مقاله (613.92 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/jppb.2021.13891 | ||
نویسندگان | ||
Vahid Sayadi1؛ Ghasem Karimzadeh* 1؛ Mohammad Reza Naghavi2؛ Sajad Rashidi Monfared3 | ||
1Department of Plant Genetics and Breeding, College of Agriculture, Tarbiat Modares University, Tehran P. O. Box 14115-336, Iran | ||
2Agronomy and Plant Breeding Department, Agricultural College, University of Tehran, Karaj, Iran | ||
3Department of Agricultural Biotechnology, College of Agriculture, Tarbiat Modares University, Tehran P. O. Box 14115-336, Iran | ||
چکیده | ||
One of the largest monocotyledonous genus in the Amaryllidaceae family is the Allium genus that includes approximately 900 species. This study aimed to examine the variations and clustering of eight Iranian endemic Allium species based on karyotype features. The species were collected from wild habitats across different geographical areas of Iran. A. sativum, A. stipitatum, A. fistolosum, A. umbellicatum, A. stamineum, A. lenkoranicum, and A. rubellum, were diploids (2n = 2x = 16), but A. atroviolaceum was triploid (2n = 3x = 24). The results represent x = 8 for basic chromosome numbers in all species. Analysis of variance showed significant interspecific variations for all eight chromosomal parameters tested. The mean of chromosome lengths was 11.19 μm, varied from 8.59 μm to 13.81 μm for A. atroviolaceum and A. stipitatum, respectively. In all species, the chromosome types were determined as mostly metacentric (m) and submetacentric (sm), formed five different karyotype formulas of 16m (A. stipitatum, A. fistolosum, A. stamineum), 14m+2sm (A. sativum, A. rubellum), 12m+4sm (A. lenkoranicum), 10m+6sm (A. umbellicatum), and 24m (A. atroviolaceum). According to Stebbins' classification, all karyotypes were grouped in the 1A class and represented the most symmetrical karyotypes. The information obtained from karyotype and chromosome morphology has an appreciable value in understanding the taxon evolution and interrelations. | ||
کلیدواژهها | ||
Allium L؛ Chromosome؛ Karyotype asymmetry؛ Ploidy level؛ Variation | ||
مراجع | ||
Anjali M and Srivastava AK, 2012. Karyological studies in twelve accessions of Carthamus tinctoriusi. Caryologia 65(1): 1-6.
Ao C, 2008. Chromosome numbers and karyotypes of Allium przewalskianum populations. Acta Biologica Cracoviensia Series Botanica 50(1): 43-49.
Baranyi M and Greilhuber J, 1999. Genome size in Allium: in quest of reproducible data. Annals of Botany 83(6): 687-695.
Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, and Soltis DE, 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proceedings of the National Academy of Sciences, USA 109: 1176-1181.
Etoh T and Simon PW, 2002. Diversity, fertility and seed production of garlic. In: Rabinowitch HD and Currah L (eds.) Allium Crop Science: Recent Advances, Pp. 101–117. CABI Publishing, Wallingford, UK.
Friesen N, Fritsch RM, and Blattner FR, 2006. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22(1): 372-395.
Garcia-Lampasona S, Martinez L, and Burba JL, 2003. Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica 132(1): 115-119.
Gennur MN, Kadapa SN, Habib AF, and Goud JV, 2011. Karyomorphological studies in Asiatic cottons. I. Karyotypic analysis of species and races of asiatic cottons based on chromatin content. Cytologia 53(1): 97-106.
Herden T, Hanelt P, and Friesen N, 2016. Phylogeny of Allium L. subgenus Anguinum (G. Don. ex W.D.J. Koch) N. Friesen (Amaryllidaceae). Molecular Phylogenetics and Evolution 95: 79-93.
Husband BC, 2004. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Botanical Journal of the Linnean Society 82: 537-546.
Jabbes N, Geoffriau E, Le Clerc V, Dridi B, and Hannechi C, 2011. Inter simple sequence repeat fingerprints for assessing genetic diversity of Tunisian garlic populations. Journal of Agricultural Science 3(4):77-85.
Jiemei X, Lei Y, Xingjin H, and Peifeng X, 1998. A study on karyotype differentiation of Allium fasciculatum (Liliaceae). Journal of Systematics and Evolution 36(4): 346-352.
Karimzadeh G, Danesh-Gilevaei M, and Aghaalikhani M, 2011. Karyotypic and nuclear DNA variations in Lathyrus sativus (Fabaceae). Caryologia, 64(1): 42-54.
Karimzadeh G, Mousavi SH, Jafarkhani-Kermani M, and Jalali-Javaran M, 2010. Karyological and nuclear DNA variation in Iranian endemic muskmelon (Cucumis melo var. inodorus). Cytologia 75(4): 451-461.
Kim CH, Lee MA, Kim TW, Jang JY, and Kim HJ, 2012. Anti-inflammatory effect of Allium hookeri root methanol extract in LPS-induced RAW264.7 cells. Journal of the Korean Society of Food Science and Nutrition 41(11): 1645-1648.
Kusterer J, Fritsch RM, and Keusgen M, 2011. Allium species from central and southwest Asia are rich sources of marasmin. Journal of Agricultural and Food Chemistry 59(15): 8289-8297.
Leitch A and Leitch I, 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481-483.
Levan A, Fredga K, and Sandberg AA, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52(2): 201-220.
Li MJ, Guo XL, Li J, Zhou SD, Liu Q, and He XJ, 2017: Cytotaxonomy of Allium (Amaryllidaceae) subgenera Cyathophora and Amerallium sect. Bromatorrhiza-Phytotaxa 331(2): 185-198.
Londhe VP, Gavasane AT, Nipate SS, Bandawane DD, and Chaudhari PD, 2011. Role of garlic (Allium sativum) in various diseases: an overview. Pharmaceutical Research and Opinion. 1(4): 129-134.
Madlung A, 2013. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110(2): 99-104.
Maragheh FP, Janus D, Senderowicz M, Haliloglu K, and Kolano B, 2019. Karyotype analysis of eight cultivated Allium species. Journal of Applied Genetics 60(1): 1-11.
Miri SM, 2020. Artificial polyploidy in the improvement of horticultural crops. Journal of Plant Physiology and Breeding. 10(1): 1-28.
Miryeganeh M and Movafeghi A, 2011. Karyotype analysis in some species of Allium section Allium (alliaceae). Romanian Journal of Biology - Plant Biology 56(1): 17-27.
Paknia R and Karimzadeh G, 2011. Karyotypic study and chromosome evolution in some Iranian local onion populations. Journal of Plant Physiology and Breeding 1(1): 49-62.
Paszko B, 2006. A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 258(1): 39-48.
Peruzzi L and Eroǧlu HE, 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7(1): 1-9.
Peruzzi L, Leitch IJ, and Caparelli KF, 2009. Chromosome diversity and evolution in Liliaceae. Annals of Botany 103(3): 459-475.
Reeves A, 2001. MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44(3): 439-443.
Romero Zarco C, 1986. A new method for estimating karyotype asymmetry. Taxon 35(3): 526-530.
Isaacsohn JL, Moser M, Stein EA, Dudley K, Davey JA, Liskov E, and Black HR, 1998. Garlic powder and plasma lipids and lipoproteins: a multicenter, randomized, placebo-controlled trial. Archives of Internal Medicine 158(11): 1189-1194.
SAS Institute Inc. 2009. SAS/STAT 9.2 User’s Guide. USA.
Salmasi K, Javadi H, and Miri SM, 2019. Karyotype analysis of some Allium species in Iran. Journal of Plant Physiology and Breeding 9(2): 115-127.
Sayadi V, Karimzadeh G, Rashidi Monfared S, and Naghavi MR, 2020. Identification and expression analysis of S-alk (en) yl-L-cysteine sulfoxide lyase isoform genes and determination of allicin contents in Allium species. PlosOne, 15(2), e0228747.
Seijo JG and Fernández A, 2003. Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). American Journal of Botany 90(7): 980-987.
Stebbins GL, 1971. Chromosomal evolution in higher plants. Edward Arnold, London, UK, 216 pp.
Su CC, Chen GW, Tan TW, Lin JG, and Chung JG, 2006. Crude extract of garlic induced caspase-3 gene expression leading to apoptosis in human colon cancer cells. In Vivo 20(1): 85-90.
Venora G, Conicella C, Errico A, and Saccardo F, 1991. Karyotyping in plants by an image analysis system. Journal of Genetics and Breeding 45(3): 233-240.
Wendelbo P, 1971. Flora Iranica. Alliaceae. Lfg. Nos. 76. Akademische Druck- u. Verlagsanstalt, Graz, Austria, 99 pp.
Zhou CJ, Zhou SD, Huang DQ, and He XJ, 2012. Karyotypes of 25 populations of 15 species in Allium section Rhiziridium from China. Plant Diversity 34(2): 120-136.
Zuo L and Yuan Q, 2011. The difference between the heterogeneity of the centromeric index and intrachromosomal asymmetry. Plant Systematics and Evolution 297(2): 141-145.
| ||
آمار تعداد مشاهده مقاله: 279 تعداد دریافت فایل اصل مقاله: 417 |