- [1] M. Aalaei and M. Manteqipour, An adaptive Monte Carlo algorithm for European and American options, Com- putational Methods for Differential Equations., (2021), 1–16.
- [2] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, Journal of Computational Physics., 280 (2015), 424–438.
- [3] M. N. Anwar and L. S. Andallah, A study on numerical solution of Black-Scholes model, Journal of Mathematical Finance., 8(2) (2018), 372–381.
- [4] A. Bekir and O¨ . Gu¨ner, Analytical approach for the space-time nonlinear partial differential fractional equation, International Journal of Nonlinear Sciences and Numerical Simulation., 15(7-8) (2014), 463–470.
- [5] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of political economy., 81(3) (1973), 637–654.
- [6] R. H. De Staelen and A. S. Hendy, Numerically pricing double barrier options in a time-fractional Black-Scholes model, Computers & Mathematics with Applications., 74(6) (2017), 1166–1175.
- [7] Z. Ding, A. Xiao, and M. Li, Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients, Journal of Computational and Applied Mathematics., 233(8) (2010), 1905– 1914.
- [8] R. Farnoosh, A. Sobhani, H. Rezazadeh, and M. H. Beheshti, Numerical method for discrete double barrier option pricing with time-dependent parameters Computers & Mathematics with Applications., 70(8) (2015), 2006–2013.
- [9] G. Gao, Z. Sun, and H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, Journal of Computational Physics., 259 (2014), 33–50.
- [10] A. Golbabai and O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black-Scholes model, Computational Economics., (2019), 1–23.
- [11] D. Hackmann, Solving the Black Scholes equation using a finite difference method, Available online: math. yorku.ca/˜ dhackman/BlackScholes7., 2009.
- [12] R. Hejazi, E. Dastranj, N. Habibi, and A. Naderifard, Stochastic analysis and invariant subspace method for handling option pricing with numerical simulation, Computational Methods for Differential Equations., 1 (2021), 1–14.
- [13] B. Jin, R. Lazarov, and Z. Zhou, Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview, Computer Methods in Applied Mechanics and Engineering., 346 (2019), 332–358.
- [14] M. N. Koleva and G. L. Vulkov, Numerical solution of time-fractional Black-Scholes equation, Computational and Applied Mathematics., 36(4) (2017), 1699–1715.
- [15] K. Kumar, R. K. Pandey, and S. Sharma, Comparative study of three numerical schemes for fractional integro- differential equations, Journal of Computational and Applied Mathematics., 315 (2017), 287–302.
- [16] A. G. Lakoud, R. Khaldi, and A. Kılı¸cman, Existence of solutions for a mixed fractional boundary value problem, Advances in Difference Equations., 2017(1) (2017), 164.
- [17] N. N. Leonenko, M. M. Meerschaert, and A. Sikorskii, Fractional pearson diffusions, Journal of mathematical analysis and applications., 403(2) (2013), 532–546.
- [18] H. Liao, D. Li, and J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM Journal on Numerical Analysis, 56(2) (2018), 1112–1133.
- [19] F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Applied Mathematical Modelling., 38(15-16) (2014), 3871–3878.
- [20] W. H. Luo, T. Z. Huang, G. C. Wu, and X. M. Gu, Quadratic spline collocation method for the time fractional subdiffusion equation, Applied Mathematics and Computation., 276 (2016), 252–265.
- [21] W. H. Luo,C. Li, T. Z. Huang, X. M. Gu, and XG. C. Wu, A high-order accurate numerical scheme for the Caputo derivative with applications to fractional diffusion problems, Numerical functional analysis and optimization., 39(5) (2018), 600–622.
- [22] F. Mehrdoust, A. H. R. Sheikhani, M. Mashoof, and S. Hasanzadeh,Block-pulse operational matrix method for solving fractional Black-Scholes equation, Journal of Economic Studies., (2017).
- [23] R. C. Merton, Theory of rational option pricing, The Bell Journal of economics and management science., (1973), 141–183.
- [24] H. Mesgarani, A. Adl, and Y. Esmaeelzade Aghdam, Approximate price of the option under discretization by applying quadratic interpolation and Legendre polynomials, Mathematical Sciences., (2021), 1–8.
- [25] H. Mesgarani, S. Ahanj, and Y. Esmaeelzade Aghdam, Numerical investigation of the time-fractional Black- Scholes equation with barrier choice of regulating European option, Journal of Mathematical Modeling., (2021), 1–10.
- [26] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley., (1993).
- [27] B. P. Moghaddam and Z. S. Mostaghim, Modified finite difference method for solving fractional delay differential equations, Boletim da Sociedade Paranaense de Matem´atica., 35(2) (2017), 49–58.
- [28] S. Momani and Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Physics Letters A., 355(4-5) (2006), 271–279.
- [29] Z. M. Odibat, Analytic study on linear systems of fractional differential equations, Computers & Mathematics with Applications., 59(3) (2010), 1171–1183.
- [30] P. Phaochoo, A. Luadsong, and N. Aschariyaphotha, The meshless local Petrov-Galerkin based on moving kriging interpolation for solving fractional Black-Scholes model, Journal of King Saud University-Science., 28(1) (2016), 111–117.
- [31] M. Rezaei Mirarkolaei, A. Yazdanian, S. M. Mahmoudi, and A. Ashrafi, A compact difference scheme for time- fractional Black-Scholes equation with time-dependent parameters under the CEV model: American options, Com- putational Methods for Differential Equations., 9(2) (2021), 523-552.
- [32] S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu, and P. Agarwal, On analytical solutions of the fractional differential equation with uncertainty: application to the basset problem, Entropy., 17(2) (2015), 885–902.
- [33] L. Song and W. Wang, Solution of the fractional Black-Scholes option pricing model by finite difference method, Abstract and applied analysis., (2013), 1-10.
- [34] M. Stynes, E. OR´iordan, and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM Journal on Numerical Analysis., 55(2) (2017), 1057–1079
- [35] Z. Tian, S. Zhai, H. Ji, and Z. Weng, A compact quadratic spline collocation method for the time-fractional Black-Scholes model, Journal of Applied Mathematics and Computing., (2020), 1–24.
- [36] M. K. S. Uddin,M. Ahmed, and S. K. Bhowmilk, A note on numerical solution of a linear Black-Scholes model, GANIT: Journal of Bangladesh Mathematical Society., 33 (2013), 103–115.
- [37] J. Wang and G. Liu, On the optimal shape parameters of radial basis functions used for 2-D meshless methods, Computer methods in applied mechanics and engineering., 191(23-24) (2002), 2611–2630.
- [38] C. Xie, X. Xie, Y. Esmaeelzade Aghdam, B. Farnam, and H. Jafari, The Numerical Strategy of Tempered Fractional Derivative in European Double Barrier Option, Fractals., (2021), 1–9.
- [39] H. Zhang, F. Liu, I. Turner, and Q. Yang, Numerical solution of the time fractional Black-Scholes model governing European options, Computers & Mathematics with Applications., 71(9) (2016), 1772–1783.
- [40] M. Zheng, F. Liu, V. Anh, and I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Applied mathematical modelling., 40(7-8) (2016), 4970–4985.
|