- [1] S. Abbasbandy and A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems, Numer Algor. 54 (2010), 521-532.
- [2] M. A. AL-Gwaiz, Sturm-Liouville theory and its applications, springer - verlage, London, 2008.
- [3] Q. M. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos Soluitions Fractals, 40 (2009), 138-189.
- [4] Q. M. AL-Mdallal, T. Abdeljawad, and M. A. Hajji, Theorical and Computational prespectives on eigen- valuse of fourth-order fractional Sturm-Liouville problem, International Journal of Computer Science, DOI: 10.108010027160.2017.1322690.
- [5] F. V. Atkinson and A. B. Mingarelli, Asymptotics of the number of zeros and the eigenvalues of general wieghted sturm-liouville problems, J. fur die reine angewandte Math, (Crelle), 375–376, (1987), 380-393.
- [6] B.S. Attili and D. Lesnic, An efficient method for computing eigenelements of Sturm-Liouville fourth-order bound- ary value problems, Applied Mathematics and Computation, 182(2) (2006), 1247–1254.
- [7] A. M. Cohen, Numerical method for Laplace transform inversion, springer, New York (2007).
- [8] M. Dehghan, A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I, arXiv preprint arXiv:1712.09891, 2017.
- [9] M. Dehghan, A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, II, arXiv preprint arXiv:1712.09894, 2017.
- [10] F. Jarad and T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Res. Nonlinear Anal. 1(2), 88–98 (2018).
- [11] E. J. N´apoles Vald´s, and C. Tun¸c, On the Boundedness and Oscillation of Non-conformable Lienard Equation, J. Fract. Calc. Appl., 11(2) (2020), 92-101.
- [12] J. He, The variational iteration method for eighth-order initial-boundary value problems, Phys. Scr., 76 (2007), 680-682.
- [13] U. N. Katugampola, A new fractional derivative with classical properties, e-print arXiv:1410.6535, (2014).
- [14] R. Khalil, M. Al Horani, A. Yousef, and M. Sababhehb, A new definition of fractional derivative, J. Comp. Applied Math., 264 (2014), 65—70.
- [15] H. Khan, C. Tun¸c and A. Khan, Green function’s properties and existence theorems for nonlinear singular-delay- fractional differential equations with p-Laplacian, Discrete Contin. Dyn. Syst. Ser. S., 13(9) (2020), 2475–2487.
- [16] N. A. Khan, O. A. Razzaq, and M. Ayaz, some properties and application of confomable fractional (CFLT), Journal of Fractional Calculus and Applications. 9(1) (2018), 72–81.
- [17] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, Amsterdam, 2006.
- [18] M. Klimek and O. P. Agrawal, Fractional Sturm-Liouville problem, Computers and Mathematics with Applica- tions, 66(5) (2013), 795 - 812.
- [19] Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal, 15(1) (2012), 141–160.
- [20] F. Martinez, P. O. Mohammed, and E. J. N´apoles Vald´s, NON-CONFORMABLE FRACTIONAL LAPLACE TRANSFORM, Kragujevac Journal of Mathematics. 46(3) (2022), 341–354.
- [21] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York (1993).
- [22] A. B. Mingarelli, On generalized and fractional derivatives and their applications to classical mechanics, Journal of Physics A: Mathematical and Theoretical. .
- [23] G. M. Mittag-Leffler, Sur la nouvelle function Eα, C. R. Acad. Sci. Paris, 137 (1903), 554–558.
- [24] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York, 1974.
- [25] I. Podlubny, Fractional differential equations, Academic, New York, 1999.
- [26] P. Ravi, Agarwal, and Y. M. Chow, Iterative methods for a fourth order boundary value problem, DOI: 10.1016/0377-0427(84)90058-X.
- [27] M. Rivero, J. Trujillo, and M. Velasco, A fractional approach to the Sturm-Liouville problem, Cent. Eur. J. Phy., 11(10) (2013), 1246-1254.
- [28] S. Samko, A. Kilbas, and Q. Marichev, Fractional integrals and derivatives, Berlin: Gorden and Breach 1993.
- [29] A. Younus, K. Bukhsh, and C. Tun¸c, Existence of resolvent for conformable fractional Volterra integral equations, Appl. Appl. Math., 15(1) (2020), 372—393.
- [30] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, vol. 121, American Mathematical Society, 2005.
|