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Abstract

In this paper, the transport of flow and heat transfer through parallel plates arranged horizontally against each

other is studied. The mechanics of fluid transport and heat transfer are formulated utilizing systems of the

coupled higher-order numerical model. This governing transport model is investigated by applying the variation
of the parameter’s method. Result obtained from the analytical study is reported graphically. It is observed from

the generated result that the velocity profile and thermal profile drop by increasing the squeeze parameter. The

drop inflow is due to limitations in velocity as plates are close to each other. Also, thermal transfer due to flow
pattern causes decreasing boundary layer thickness at the thermal layer, consequently drop in thermal profile. The

analytical obtained result from this study is compared with the study in literature for simplified cases, this shows

good agreement. The obtained results may therefore provide useful insight to practical applications including
food processing, lubrication, and polymer processing industries amongst other relevant applications.
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1. Introduction

Fluid flow through flow mediums have generated increasing interest in physical sciences and engineering, this
is due to its wide range of applications in the modern day, but practical applications including lubrication, food
processing, and polymer processing amongst other economically viable industries. As these applications are economic
drivers, therefore it is of paramount importance to study the process applications and the controlling parameters
involved in the study. Which improves the efficiency of the study. In the light of the above Choi [15] enhanced the
thermal conductivity of fluid using nanoparticles. Viscoelastic nanofluid flow through a stretching sheet was studied
by Madhu et al. [26]. The convective flow of a magnetohydrodynamic nanofluid in porous media under slip conditions
was simulated by Uddin et al. [46]. Nanofluid flow through natural convecting differentially heated square cavity
was investigated by Bendaraa et al. [13]. Ali and Makinde [11] modeled the variable viscosity effects on coquette
fluid flowing unsteadily under convective cooling. Investigation of natural fluid flow under convective conditions was
presented by Baskaya et al. [12] in the presence of a magnetic field applied constantly. Mixed convective nanofluid flow
over a thin needle was studied by Nayak et al. [32] utilized a thin isothermal needle with nanomaterials of metallic and
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metallic oxide nanomaterial. Thermal diffusion effect and viscous dissipation of micropolar non-Newtonian flow were
presented by Abou-Zeid [1]. Pulsatile heat transfer and non-Newtonian fluid transport conveyed through a non-Darcy
porous medium were analyzed by Eldade and Abou-Zeid[18]. Shortly after, Abou-Zeid [2] studied the coupled stress
effect on peristaltic magnetohydrodynamic flow. Instability analysis of circular nanoelectromechanical plates into
hydrostatic actuation was studied by Zabihi et al. [48]. Flow and thermal transfer of Carreu nanofluid considering
internally generated heat transported over stretch sheet were presented by Sobamowo et al. [42]. The effect of thermal
and fluid velocity was analyzed by Usman et al. [47] over-stretching permeable and incline cylinder. Nanofluid flow
under bi-conventional conditions was studied by Uddin et al. [45] over a wedge under magnetic induction and multi-
slip. Nanofluid transport and radiative heat transfer were presented by Hosseini et al. [25] subjected to chemical
reaction and varying surface heat flux.

Since physical problems of this nature are described by higher-order differentials of ordinary coupled system equa-
tions. It ,therefore, becomes pertinent to analyze it utilizing numerical or analytical methods of solution. In the past,
many analytical/numerical methods have been employed by researchers in providing solutions to physical problems of
this nature. Methods include the perturbation method (PM), Homotopy analysis method (HAM), Optimal Homotopy
asymptotic method (OHAM), residual weighted method (Galerkin, collocation, least squares method), variation iter-
ation method (VIM), adomian decomposition method (ADM), and variation of parameter’s method (VPM) [28, 29].
Analytical methods have been discovered to depend strongly on small perturbation parameter, which is usually non
existent in practical science, round off errors, non-linearities, and other intricacies. However, the variation of parame-
ter been a method of solution that can solve partial as well as ordinary coupled equations accurately, free from small
perturbation parameter, having a highly successive iteration scheme with less computational procedural cost and time
is adopted in this paper.

The flow of fluids under magnetic field effect has been proven over the years to be very pertinent to engineering
applications including molten salt and metal pumps. As electromotive forces are generated due to applied magnetic
field which velocity distribution. For some recent and interesting works, see, also, [8–10, 21, 37].

With respect to literature past, this paper aims to study the analysis of hydrothermal squeezing flow of nanofluid
conveyed past parallel plates. These squeezing nanofluid flow phenomena and thermal transport are constantly sub-
jected to magnetohydrodynamic field strength applied constantly, which is analyzed applying the VPM. The credibility
of the results is validated by comparing the VPM with other methods in the literature. As a result, the effects of
thermophoresis parameter, Brownian motion, magnetic field, suction/blowing parameter, and Squeezing parameter
are discussed in detail.

2. Problem Description

In this section, the flow and thermal transport of nanofluid past parallel plates arranged horizontally against each
other are presented. The plates having a distance of h(t) = H(1−at)0.5 are squeezing under variable applied magnetic
field b(t) = B(1 − at)0.5 perpendicular to plates as depicted in the model diagram Figure 1. The squeezing flow and
its flow patterns are axisymmetric with considering left part of the channel, for simplicity sake. It is assumed fluid
is incompressible, unsteady, fluid, and nanoparticles are at thermal equilibrium to each other, radiative and viscous
dissipation is considered negligible due to constriction of flow part, non-chemically reactive, and non-slip flow. It
should be carefully noted high moving fluid of large mass, effect of dissipation is constant. Thereupon, the governing
equations of the fluid can be represented as [40]:
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Figure 1. Schematic of the problem

(ρcp)

(
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+
(−→ν .−→∇)C = DB∇2C +

DT

Tm
∇2T, (2.4)

where
−→
J =

(−→
V ×

−→
B
)

in which
−→
V = (U, V,W ) is the velocity-vector. Besides, ρ, T, P, µ, CP,K, α,C,DB , Tm,

k and τ are density, temperature, -pressure, viscosity, heat-capacitance, thermal-conductivity of nanofluid, thermal
diffusivity, nanoparticles concentration, Brownian motion coefficient, mean fluid temperature, thermal conductivity,

and non-dimensional parameter correspondingly. Also, the Laplacian operator is indicated through
−→
∇ and given by

−→
∇ =

(
∂

∂X
,
∂

∂y
,
∂

∂z

)
. (2.5)

The boundary conditions are as follows:

z = h(t) : u = 0, w =
dh

dt
, T = Th, C = Ch,

z = 0 : u = 0, w = − w0√
1− at

, T = Tw, C = Cw, (2.6)

where velocity components in the- z- and r- directions are-signified via v and u. With the velocity dh/dt, the upper
disk can move towards or away from the motionless bottom disk at Z = h(t). The whole diffusion mass flux for
nanoparticles-is the last term in-the energy equation. The parameters of similarity-solution are as-follows:

u =
ar

2(1− at)
f ′(η), w = − aH√

1− at
f(η), η =

z

H
√

1− at
, (2.7)

B(t) =
B0√

1− at
, θ =

T − Th
TW−Th

, φ =
C − Ch
CW−Ch

.

Furthermore, h(t) = H(1− at)1/2
and B(t) = B0(1− at)−1/2

signify the distance between two parallel plates and the
variable-magnetic field. The ‘×’,‘-’ and ‘+’ imply the magnetic field which is perpendicular to the plane, the negative
and-positive-charges. Moreover, Tw and TH indicate the temperature at the bottom and upper disks, Cw and CH
signify the concentration at the bottom and upper disks of nanoparticles. If a < 0 then two plates are separated, and
if a > 0, then two plates are squeezed. The nonlinear equation is acquired by eliminating the pressure gradient from
Eqs. (2.2), (2.3), then rewriting Eqs. (2.4), (2.5), [38]:

f ′′′
′ − S(ηf ′′′ + 3f ′′ − 2ff ′′′)−M2f ′′ = 0,

θ′′ + prS(2fθ′ − ηθ′) + prNbθ′φ′ + prNtθ′
2

= 0,
φ′′ + LeS(2fφ′ − ηφ′) + Nt

Nbθ
′′ = 0.

(2.8)
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Besides, boundary conditions are described as follows:

f(0) = A, f ′(0) = 0, θ(0) = φ(0) = 1,

f ′(1) =
1

2
, f ′(1) = 0, θ(1) = φ(1) = 0, (2.9)

where S,M,Nb,Nt, Pr, Le evince the Squeeze number, the Hartmann number, the Brownian motion parameter, the
Thermophoretic parameter, Prandtl number, and Lewis number which are defined as follows:

A =
W0

aH
, S =

aH2

2υ
, M =

√
σB2

0H
2

υ
, Pr =

υ

α
, (2.10)

Nb =
(ρc)pDB(CW − Ch)

(ρc)fυ
, Nt =

(ρc)pDT (Tw−Th)

(ρc)fTmυ
,

where A is the suction/blowing parameter, in which suction and blowing of fluid have occurred when A > 0, and
A < 0 relatively. The intensity of magnetic field is represented as M , influence of momentum to thermal diffusivity is
presented as Pr, concentration flow of nanoparticles are revealed as Nt,Nb, and Le, receding and coming together of
plate is presented as S.

3. Solution Procedure

The technical procedures or procedural concept of the VPM for the analysis of coupled, nonlinear, and differential
higher-order equation systems are

Lf (η) +Wf (η) +Nf (η) = Z, (3.1)

where L is the highest order derivative and easily convertible, W is the linear operator remainder and less compared
with L, Zis the system input or source term, and N is the nonlinear equation term. After decomposing Eq.(3.1) into
linear and nonlinear terms L and N respectively, the VPM can be expressed as shown

fn+1(η) = f0 (η) +

η∫
0

λ(ηs)(−wfn(s)−Nfn(s)− g(s)ds, (3.2)

with as initial approximation given by

f0(η) =

m∑
i=0

kif
i(0)

i!
, (3.3)

where m is the order of the given differential equation, ki is an unknown-constant, λ(η, s) is the multiplier which
reduces the equation integration order. This is obtained upon the application of the Wronskian-technique [16]:

λ(η, s) =

m∑
i=0

(−1)
i−1

si−1ηm−1

(i− 1)!(m− i)!
=

(η − s)m−1

(m− 1)!
. (3.4)

4. Application of the VPM

The governing equations Eq. (2.8) are expressed by applying the standard procedural method of the variation of
parameters expressed in Eq. (3.4). With respect to the above, the governing equations Eq. (2.8) can be expressed as

fn+1 (η) = k1 + k2s+ k3s
2 + k4s
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θn+1 (η) = k1 + k2s−
η∫

0
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)
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dθ
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φn+1 (η) = k1 + k2s−
η∫

0

(η − s)
[
d2φ

dη2
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(
2f
dφ

df
− η dφ
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)
+
Nt

Nb

d2θ

dη2

]
ds. (4.3)

The constants k1, k2, k3 and k4 are constants of integration. They are obtained by taking-the highest-order in the
linear term Eqs. (4.1)-(4.3). This is integrated to derive the final scheme-form. The iterative-scheme is obtained via
implementing the boundary condition Eq. (2.9), With the first-order term shown as below

f0 = A−
(
η2(6A+ 1)

)
/2 +

(
η3(12A+ 3)

)
/6, (4.4)

θ0 = 1− η, (4.5)

φ0 = 1− η. (4.6)

Like the first-order term, the second-order and highest-order terms are expressed from the simplification of Eqs.
(4.1)-(4.3) as below

f1 = A+

(
η3(12A+ S/40− (4Sη)/35− 6AM2/5 + 7Sη2/40− Sη3/20
−M2/20 + 9AS/140− 9ASη/35 +ASη2/4 + 3ASη3/10 + 3

)
/6

−

 η2(6A+ S/140− 9Sη/280−AM2/10
+Sη2/20− Sη3/40 +M2/60 + 2AS/105
−MASη/140 +ASη2/10−ASη3/60 + 1

 /2

+η5
(
Sη2/80−AM2/10 + Sη3/60−M2/40 + 3ASη2/40 +ASη3/15

− η4
(
2M2 + Sη3(6A+ 1)

))
/48

+
(
Sη7(6A+ 12η + 48Aη + 1)/1680−

(
Sη8(4A+ 1)

)
/840

)
−
(
Sη7 (6A+ 4η + 16Aη + 1)

)
/240,

(4.7)

θ1 =(PrS(4A+ 1)η6)/30− (PrS(6A+ η + 4Aη + 1)η5)/20 (4.8)

+ (PrS(η + 6Aη − 1)η4)/12

+ (PrS(2A+ η)η3))/6 + Pr(Nb+Nt− 2ASη)η2)/2 + ((PrS)/10− (NbPr)/2

− (NtPr)/2− (APrS)/6− (PrSη)/5 + (7APrSη)/10− 1)η + 1,

φ1 =LeS(4A+ 1)η6/30− LeS(6A+ η5A+ 1)η5/20 + LeS(η + 6Aη − 1)η4/12 (4.9)

+ LeS(2A+ η)η3/6−ALeSη3 + LeS/10−ALeS/6
− LeSη/5 + 7ALeSη/10− 1)η + 1,

and the highest-order terms of the solution of Eq. (4.1)-(4.3) are presented as follows

f2 =A− 3Aη2 + 2Aη3 − Sη2/280 + Sη3/240 + 5η7/1680− 8η8/840− η2/2 + η3/2 (4.10)

−M2η2/120−M2η3/120 +M2η4/24− 13M4η2/50400−M2η5/40

−M4η3/16800 + ...,
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θ2 =A2Pr2S2η10/4−A2Pr2S2η11/18− 2A2Pr2S2η9/7−A2Pr2S2η8/3 (4.11)

+ 47A2Pr2S2η4/10− 313A2Pr2S2η3/1575 + 2A2Pr2S2η11/25

− 31A2Pr2S2η7/150 + ...,

φ2 =η6LeS/15 + LeS/3600− Le2S2/300 + 43ALe2S2/900 + 7LeS2η2/31 (4.12)

+ Le2S2η/900− LeS2η3/1800 + LeSη4/720 + 4ALeS/15 +A2Le2S2/45

− Le2S2η3/36 +ALeS2/1400− LeM2S/1800− 2LeS2η/1575

+NtPrS/30Nb+ ....

As observed in the analysis for velocity, thermal, and concentration profiles in Eqs. (4.4)- (4.12). The final expression
of the velocity, thermal, and concentration profile can be represented as

f (η) = f0 (η) + f1 (η) + f2 (η) , (4.13)

θ (η) = θ0 (η) + θ1 (η) + θ2 (η) , (4.14)

φ (η) = φ0 (η) + φ1 (η) + φ2 (η) . (4.15)

Besides, important characteristics of mass and heat transfer such as skin friction, nusselt number and the sherwood
number are expressed as follows

cfr = f ′′(1), (4.16)

Nur = −θ(1),

Shr = −φ(1).

5. Results and Discussions

In this section, the effect of hydrothermal analysis of nanofluid flowing through the parallel plates is examined
under the effect of magnetic field, which is reported graphically for varying parametric quantities. The analysis is
investigated using the variation of parameters method which is validated for the simplistic case with Hosseinzadeh et al.
[33] expressed in Table (1) for fluid concentration profile at parameters A = M = S = Le = Nb = Nt = 1, Pr = 2.2.
Also, the effect of varying parameters for thermal scale for slowing receding plates is shown in Table (2). As observed
from the scale, thermal distribution rises at the lower plate, then towards the midplate (η = 0.4) the temperature
decreases slightly. As seen in Table (3), the scale for thermal distribution is shown, this reveals as plates come together
temperature decreases steadily from the lower plate to the upper plate. This is due to thermal loss relate to heat
exchange caused by plate motion which is analyzed at constant parameters of A = 1,M = 0.5, Le = 1, Nb = Nt = 0.2,
and Pr = 1.2.

In Figure 2, the velocity profile versus η is depicted to show the impact of the Magnetic parameter. As seen the
variation of velocity profile is increased through raising the Magnetic parameter, this is due to the effect of increasing
Lorentz force effect on the boundary, therefore increasing thickness of momentum layer thickness. Also, the effect of
Magnetic parameter can be neglected by raising η.

The velocity profile versus η is presented to verify the impact of A in Figure 3. It can be inferred that the velocity
profile is increased by raising the suction parameter A > 0, however it is decreased via increasing the blowing parameter
A < 0. Suction parameter increase causes a surge in velocity due to turbulence in flow.

In Figures 4 and 5, the impact of squeeze parameter on velocity and thermal profile against η are shown. It can be
concluded that the velocity profile and thermal profile are dropped by increasing the squeeze parameter. Drop in flow
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is due to limitations in velocity as plates are close to each other. Also, thermal transfer due to flow pattern causes
decreasing boundary layer thickness at the thermal layer, consequently drop in thermal profile.

In Figure 6, the concentration profile versus is plotted. It is transparent that as plates recede (s < 0) concentration
decreases due to fluid boundary layer thickness reduces. On the other hand, when plates move together (s > 0)
boundary layer improves due to the conservation of mass flow as velocity gradient increases. This is due to diminishing
thickness of concentration layer.

In Figures 7 and 8, effects of thermophoresis parameter on thermal profile and concentration profile versus are
depicted. One can find that from Figure 7, mass transfer and heat convection induce high fluid temperature particle,
so particle dispersion increases hence heat transfer rate increases relatively. However, in Figure 8, slower fluid par-
ticle motion increases concentration boundary layer, thereupon the concentration profile is decreased by raising the
thermophoresis parameter.

In Figures 9 and 10, the effects of Brownian parameter on thermal profile and concentration profile are depicted.
According to these schemes, the thermal profile is increased by increasing Brownian parameter which can be physically
explained due to increase in thermal boundary thickness at the lower plate, howbeit the concentration profile is
decreased via increasing Brownian parameter. This is as a result of increasing rate of diffusion of concentration
species.

To show the impacts of Lewis number the concentration profile versus is presented in Figure 11. Based on this
graph, one can find that the concentration profile is decreased by increasing the Lewis number. As concentration of
nanoparticles in the base fluid is increased by raising the Lewis number, hence decrease in concentration of boundary
layer is obtained by high nanoparticle concentration. In Figures 12 and 13, impact of Brownian and thermophoresis
parameters on nusselt number versus squeeze parameter are depicted. One can find that by increasing Brownian and
thermophoresis parameters, nusselt number increases relatively.

Effect of squeeze parameter on skin friction versus suction/blowing and Magnetic parameters are shown in Figures
14 and 15. It is seen that skin friction is increased via increasing Brownian and thermophoresis parameters.

In Figure 16, effect of squeeze parameter on Sherwood number versus Lewis number is presented. It can be inferred
that Sherwood number decreases by increasing squeeze parameter.

Table 1. Comparison of values of η for dimensionless concentration profile (A = M = S = Le =
Nb = Nt = 1, P r = 6.2).

η φ(η)
HPM[38] CM[38] FEM[38] VPM Error

0 1.000000000 1.000000000 1.000000000 1.0000 0.000000000
0.1 0.779370558 0.9000934056 0.9112683052 0.9012 0.0100683052
0.2 0.6012650162 0.7989509826 0.8108534964 0.7932 0.0176534964
0.3 0.4559056726 0.6970283829 0.7064057452 0.6934 0.0130057452
0.4 0.3359299240 0.5947812584 .6016217396 0.5923 0.0093217396
0.5 0.2360877164 0.4926652610 0.4980783825 0.4972 0.0008783825
0.6 0.1530318820 0.3911360429 0.3962207368 0.3916 0.0046207368
0.7 0.08537940058 0.2906492357 0.2959127913 0.2954 0.0005127913
0.8 0.03409554226 0.1916605515 0.196753453 0.1965 0.0002534530
0.9 0.003119131100 0.09462558233 0.0982635139 0.0973 0.0009635139
1.0 0.00000000000 0.0000000000 0.0000000000 0.0000 0.0000000000
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Table 2. Comparison of values of η for dimensionless temperature profile (A = 1,M = 0.5, Le =
1, Nb = Nt = 0.2, P r = 1.2, S = −2).

η (θ)η Numerical VPM Error
0.0 1.0000 1.0000 0.0000
0.1 1.0571 1.0571 0.0000
0.2 1.0664 1.0664 0.0000
0.3 1.0315 1.0315 0.0000
0.4 0.9572 0.9572 0.0000
0.5 0.8488 0.8488 0.0000
0.6 0.7122 0.7122 0.0000
0.7 0.5534 0.5534 0.0000
0.8 0.3783 0.3783 0.0000
0.9 0.1922 0.1922 0.0000
1.0 0.0000 0.0000 0.0000

Table 3. Comparison of values of η for dimensionless temperature profile (A = 1,M = 0.5, Le =
1, Nb = Nt = 0.2, P r = 1.2, S = 2).

η (θ)η Numerical VPM Error
0.0 1.0000 1.0000 0.0000
0.1 0.7762 0.7762 0.0000
0.2 0.5943 0.5943 0.0000
0.3 0.4494 0.4494 .0000
0.4 0.3362 0.3362 0.0000
0.5 0.2488 0.2488 0.0000
0.6 0.1812 0.1812 0.0000
0.7 0.1275 0.1275 0.0000
0.8 0.0824 0.0824 0.0000
0.9 0.0411 0.0411 0.0000
1.0 0.0000 0.0000 0.0000
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(a) (b)

Figure 2. (a) Effect of Magnetic parameter on velocity profile against η,(b) Effect of suction/blowing
parameter on velocity profile versus η

(a) (b)

Figure 3. (a) Effect of squeeze parameter on velocity profile against η, (b) Impact of squeeze pa-
rameter on thermal profile versus η
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(a) (b)

Figure 4. (a) Variation of squeeze parameter on concentration profile against η, (b) Effect of ther-
mophoresis parameter on thermal profile against η

(a) (b)

Figure 5. (a)Impact of thermophoresis parameter on concentration profile versus η, (b) Variation of
Brownian parameter on thermal profile against η.
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(a) (b)

Figure 6. (a) Impact of Brownian parameter on concentration profile versus η, (b) Effect of Lewis
number on concentration profile against η.

(a) (b)

Figure 7. (a) Impact of Brownian parameter on nusselt number versus squeeze parameter, (b)
Variation of thermophoresis parameter on nusselt number against squeeze parameter.
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(a) (b)

(c)

Figure 8. (a) Effect of squeeze parameter on skin friction versus suction/blowing parameter, (b)
Impact of squeeze parameter on skin friction against Magnetic parameter, (c) Effect of squeeze pa-
rameter on Sherwood number versus Lewis number.



592 A. ZABIHI, A. T. AKINSHILO, H. REZAZADEH, R. ANSARI, M. G. SOBAMOWO, AND C. TUNÇ

6. Conclusion

This study considers the squeezing flow through horizontally arranged parallel plates. The transport and heat
transfer mechanics are described as adopting coupled system of ordinary differential, coupled system of equations.
This is analyzed with the help of VPM as an analytical methodology. It is observed from generated result that the
velocity profile and thermal profile drops by increasing the squeeze parameter. Drop in flow is due to limitations
in velocity as plates are close to each other. Also, thermal transfer due to flow pattern causes decreasing boundary
layer thickness at the thermal layer, consequently drop in thermal profile. Analysis of result obtained is verified for
accuracy with literature obtained for simplistic case which proves excellent agreement. Results obtained may therefore
provide useful insight to practical application including food processing, lubrication, and polymer processing industries
amongst other relevant applications.
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