- [1] M. Abou-Zeid, Effects of thermal-diffusion and viscous dissipation on peristaltic flow of micropolar non-Newtonian nanofluid: Application of homotopy perturbation method, Results in Physics, 6 (2016), 481–495.
- [2] M. Y. Abou-Zeid, Homotopy perturbation method for couple stresses effect on MHD peristaltic flow of a non- newtoniannanofluid, Microsystem Technologies, 24 (2018), 4839–4846.
- [3] S. Ahmad, N. M. Arifin, R. Nazar, and I. Pop, Mixed convection boundary layer flow along vertical thin needles: assisting and opposing flows, International Communications in Heat and Mass Transfer, 3592 (2008), 157–162.
- [4] R. Ahmad, M. Mustafa, and S. Hina, Boungiomo’s model for fluid flow around a moving needle in a flowing nanofluid: a numerical study, Chinese Journal of Physics, 55 (2017), 1264–1274.
- [5] A. T. Akinshilo, Flow and heat transfer of nanofluid with injection through an expanding or contracting porous channel under magnetic force field, Engineering Science and Technology, an International Journal, 21 (2018), 486–494.
- [6] A. T Akinshilo and J. O. Olofinkua, Variation of Parameters method for thermal analysis of straight convective radiative fins with temperature dependent thermal conductivity, Journal of Computational Mechanics, 49 (2018), 125–132. DOI:10.22059/JCAMECH.2018.250910.236.
- [7] A. T. Akinshilo, J. O. Olofinkua, and O. Olaye, Flow and Heat Transfer Analysis of Sodium Alginate Conveying Copper Nanoparticles between Two Parallel Plates, Journal of Applied and Computational Mechanics, 3 (2017), 25–266.
- [8] A. T. Akinshilo, A. G. Davodi, H. Rezazadeh, G. Sobamowo, and C. Tun¸c, Heat transfer and flow of MHD micropolarnanofluid through the porous walls, magnetic fields and thermal radiation, Palest. J. Math., 11(2) (2022) , 604–616.
- [9] M. N. Alam and C. Tunc, An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system, Alexandria Engineering Journal, 11(1) (2016), 152–161.
- [10] M. N. Alam and C. Tun¸c, The new solitary wave structures for the (2+1)-dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations, Alexandria Engineering Journal, 59 (2020), 2221–2232.
- [11] A. O. Ali and O. D. Makinde, Modelling the effects of variable viscosity on unsteady couette flow of nanofluids with convective colling, Journal of Applied Fluid Mechanics, 8 (2015), 793–802.
- [12] E. Baskaya, M. Fidanoglu, G. Komurgoz, and I. Ozkol, Investigation of MHD natural convection flow exposed to constant magnetic field via generalized differential quadrature method, Engineering Systems Design and Analysis, (2014). DOI :10.1115/ESDA 2014–20177.
- [13] A. Bendaraa, M. M. Charafi, and A. Hasnaoui, Numerical study of natural convection in a differentially heated square cavity filled with nanofluid in the presence of fins attached to walls in different locations, Physics of Fluids, 31 (2019), 052003.
- [14] M. Biglarian, M. R. Gorji, O. Pourmehran, and G. Domairry, H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer, International Journal of Hydrogen Energy, 42 (2017), 22005–2201.
- [15] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Developments and applications of non-Newtonian flows, 66 (1995), 99–105.
- [16] A. S. Dogonchi, M. Alizadeh, and D. D. Ganji, Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect, Advance Powder Technology. DOI: 10.1016/j.apt.2017.04.022.
- [17] G. Domairry and M. Hatami, Squeezing Cu-water nanofluid flow analysis between parallel plates by DTM-Pade Method, Journal of Molecular Liquids 188 (2014), 155–161.
- [18] N. T. Eldade and M. Y. Abou-Zeid, Homotopy perturbation method for MHD pulsatile non-Newtonian nanofluid flow with heat transfer through a non-Darcy porous medium, Journal of Egyptian Mathematical Society, 25 (2017), 375-381, DOI: 10.1016/j.joems.2017.05.003.
- [19] M. Fakour, D. D. Ganji, A. Khalili, and A. Bakhshi, Heat transfer in nanofluvd MHD flow in a channel with permeable wall, Heat Transfer Research 48 (2017), 221–238.
- [20] M. Fakour, A. Rahbari, K. Erfan, and D. D. Ganji, Nanofluid thin film flow and heat transfer over an unsteady stretching elastic sheet by LSM, Journal of Mechanical Science and Technology, 32 (2018), 177–183.
- [21] M. Fayz-Al-Asad, M. N. Alam, C. Tun¸c, and M. M. A. Sarker, Heat Transport Exploration of Free Convection Flow inside Enclosure Having Vertical Wavy Walls, J. Appl. Comput. Mech., 7(2) (2021), 520-527.
- [22] S. S. Ghadikolahi, Kh. Hosseinzadeh, and D. D. Ganji, Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM, Case Studies in Thermal Engineering, 10 (2017), 579–594. DOI: 10.1016/j.csite.2017.11.004.
- [23] Kh. Hosseinzadeh, M. Alizadeeh, and D. D. Ganji, Hydrothermal analysis on MHD squeezing nanofluid flow in parallel plates by analytical method, International Journal of Mechanical and Material Engineering, 4 (2018), 1–12.
- [24] Kh. Hosseinzadeh, M. Alizadeh, and D. D. Ganji, Hydrothermal analysis on MHD squeezing nanofluid flow in parallel plates by analytical method, International Journal of Mechanical and Materials Engineering, 143 (2020), 39–52.
- [25] E. Hosseini, Gh. BaridLoghmani, M. Heydari, and M. M. Rashidi, A numerical simulation of MHD flow and Radiation heat transfer of nanofluid through a porous medium with variable surface heat flux and chemical reaction, Journal of Mathematical Extension, 13 (2019), 31–67.
- [26] M. Madhu and N. Kishan, Finite element analysis of MHD viscoelastic nanofluid flow over a stretching sheet with radiation, Procedia Engineering, 127 (2015), 432–439.
- [27] P. Mohan Khrishna, R. Prakash Sharma, and N. Sandeep, Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flow, Nuclear Engineering Technology, 49 (2017), 1654–1659.
- [28] T. J. Moore and M. R. Jones, Solving nonlinear heat transfer problems using variation of parameters, International Journal of Thermal Sciences, 93 (2015), 29–35.
- [29] S. Mosayebidorcheh, M. Rahimi-Gorji, D. D. Ganji, and T. Moayebidorcheh, Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM, Journal of Central South University, 24(3) (2017), 675–682.
- [30] M. Mustafa, T. Hayat and S. Obadiat, On heat and mass transfer in an unsteady squeezing flow between parallel plates, Mechanica, 47 (2012), 1581–1589.
- [31] M. K. Nayak, F. Mabood, and O. D. Makinde, Heat transfer and buoyancy-driven convective MHD flow of nanoflu- ids impinging over a thin needle moving in a parallel stream influenced by Prandtl number, Heat Transfer—Asian Research (2019), 1–18.
- [32] M. K. Nayak, A. Wakif, I. L. Animasaun, and M. Saidi Hassani Alaoui, Numerical differential quadrature exami- nation of steady mixed convection nanofluid flows over and isothermal thin needle conveying metallic and metallic oxide nanomaterials: A comparative investigation, Arabian Journal for Science and Engineering, (2020), DOI: 10.1007/s13369–020–04420.
- [33] O. Pourmehran, M. M. Sarafraz, M. Rahimi-Gorji, and D. D. Ganji, Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight, Journal of the Taiwan Institute of Chemical Engineers (2018), Article ID:644800.
- [34] A. Rahbari, M. Fakour, A. Hamzehnezhad, A. Akbari, M. Vakilabadi, and D. D. Ganji, Heat transfer and fluid flow with nanoparticles through porous vessels in a magnetvc field: A quasi one dimensional analytvcal approach, Mathematical Biosciences, 283 (2017), 38–47.
- [35] M. Rahimi-Gorji, O. Pourmehran, M. Hatami, and D. D. Ganji, Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis, The European Physical Journal Plus, 130 (2016), 15022-15030.
- [36] J. V. Ramana Reddy, V. Sugunamma, and N. Sandeep, Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slandering surface with slip effects, Alexandria Engineering Journal, (2017), DOI: 10.1016/j.aej.2017.02.014.
- [37] H. Rezazadeh, J. Sab’u, A. Zabihi, R. Ansari, and C. Tun¸c, Implementation of solition solutions for nonlinear Schr¨odinger equation with variable coefficients, Nonlinear Stud., 29(2) (2022), 457-476.
- [38] S. N. A. Salleh, N. Bachok, N. Md. Arifin, F. Md. Ali, and I. Pop, Stability analysis of mixed convection flow towards moving a thin needle in nanofluid, Applied Science, 8 (2018), 842.
- [39] M. Sheikholeslami and M. M. Bhatti, Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles, International Journal of Heat and Mass Transfer, 111 (2017), 1039–1049.
- [40] W. Sikander, N. Ahmed, U. Khan, and S. T. Mohyud-Din, Coupling of optimal variation of parameters method with Adomian’spolynominals for nonlinear equations representing fluid flow in different geometrics, Neural Comput and Applic, 30 (2018), 3431–3444.
- [41] W. Sikandar, U. Khan, N. Ahmed, and S. T. Mohyud-Din, Variation of parameters method with an auxiliary parameter for initial value problems, Ain Shams Engineering Journal, 9 (2018), 1959–1963. DOI: 10.1016/j.asej.2016.09.014.
- [42] M. G. Sobamowo, L. O. Jayesimi, and M. A. Waheed, Chebyshev specteral collocation method for flow and heat transfer in magnetohydrodynamic dissipative carreunanofluid over a streteching sheet with internal heat generation, AUT Journal of Mechanical Engineering, 3 (2019), 3–14.
- [43] C. Sulochana, G. P. Ashwinkumar, and N. Sandeep, Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment, The European Physical Journal Plus, (2017), DOI: 10.1140/epjp/i2017-11633-3.
- [44] R. Trimibitas, T. Grosan, and I. Pop, Mixed convective boundary layer flow along vertical thin needle in nanofluids, International Journal of Numerical Methods for Heat and Fluid Flow, 24 (2014), 579–594.
- [45] M. J. Uddin, M. N. Kabir, O. A. Beg, and Y. Alginahi, Chebyshev collocation computation of magneto- bioconvectionnanofluid flow over a wedge with multiple slips and magnetic induction, Journal of Nanomaterials Nanoengineering and Nanosystems, 232 (2018), 109–122.
- [46] M. J. Uddin, P. Rana, O. Anwar Beg, and A. I. Md. Ismail, Finite element simulation of magnetohydrodynamic convective nanofluid slip flow in porous media with nonlinear radiation, Alexandria Engineering Journal, 55 (2016), 1305–1319.
- [47] M. Usman, F. A. Soomro, R. U. Haq, W. Wang, and O. Defterli, Thermal and velocity slip effects on Casson- nanofluid flow over an inclined permeable stretching cylinder via collocation method, International Journal of Heat and Mass Transfer, 122 (2018), 1255–1263.
- [48] A. Zabihi, J. Torabi, and R. Ansari, Effects of geometric nonlinearity on the pull-in instability of circular mi- croplates based on modified strain gradient theory, Physica Scripta, 95 (2020), 115204.
|