- [1] R. S. Adıguzel, U¨ . Aksoy, E. Karapınar, and I˙. M. Erhan, On the solutions of fractional differential equations via geraghty type hybrid contractions, Appl. Comput. Math., 20(2) (2021), 313–333.
- [2] F. A. Aliev, N. A. Aliev, and N. S. Hajiyeva, Some mathematical problems and their solutions for the oscil- lating systems with liquid dampers (Survey), 8th International Congress on Fundamental and Applied Sciences (ICFAS2021), Proceeding Book, (2021), 179–180.
- [3] F. A. Aliev, N. A. Aliev, N. S. Hajiyeva, and N. I. Mahmudov, Some mathematical problems and their solutions for the oscillating systems with liquid dampers: A review, Appl. Comput. Math., 20(3) (2021), 339–365.
- [4] F. A. Aliev, N. A. Aliev, M. M. Mutallimov, and A. A. Namazov, Algorithm for solving the identification problem for determining the fractional-order derivative of an oscillatory system, Appl. Comput. Math., 19(3) (2020), 415–422.
- [5] F. A. Aliev, N. A. Aliev, N. A. Safarova, and Y. V. Mamedova, Solution of the problem of analytical construc- tion of optimal regulators for a fractional order oscillatory system in the general case, Journal of Applied and Computational Mechanics, 7(2) (2021), 970–976.
- [6] F. A. Aliev, N. A. Aliev, N. A. Safarova, and N. I. Velieva, Algorithm for solving the Cauchy problem for stationary systems of fractional order linear ordinary differential equations, Comput. Methods Differ. Equ., 8(1) (2020), 212–221.
- [7] E. Ashpazzadeh, M. Lakestani, and A. Fatholahzadeh, Spectral methods combined with operational matrices for fractional optimal control problems: A review, Appl. Comput. Math., 20(2) (2021), 209–235.
- [8] S. Balaei, E. Eslami, and A. Borumand Saeid, Invertible square matrices over residuated lattices, TWMS J. Pure Appl. Math., 11(2) (2020), 173–188.
- [9] R. E. Bellman, Introduction to matrix analysis, New York, 1970, 391 p.
- [10] B. Bonilla, M. Rivero, and J. J. Trujillor, On systems of linear fractional differential equations with constant coefficients, Appl. Math. Comput., 187 (2007), 68–78.
- [11] S. Khan, S. A. Wani, and M. Riyasat, Study of generalized Legendre-Appell polynomials via fractional operators, TWMS J. Pure Appl. Math., 11(2) (2020), 144–156.
- [12] N. I. Mahmudov, I. T. Huseynov, N. A. Aliev, and F. A. Aliev, Analytical approach to a class of Bagley-Torvik equations, TWMS J. Pure Appl. Math., 11(2) (2020), 238–258.
- [13] A. Kh. Mirzadjanzadeh, I. M. Akhmetov, A. M. Khasaev, and V. I. Gusev, Technology and technique of oil production, Moscow, Nedra, 1986.
- [14] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional-order systems and controls. Funda- mentals and applications, Springer, London, 2010, 414 p.
- [15] M. M. Mutallimov and F. A. Aliev, Methods for solving optimization problems during the operation of oil wells,, Saarbrucken (Deutscland), LAP LAMBERT, 2012, 164 p.
- [16] A. A. Namazov, Computational algorithm for determining the order of fractional derivatives of oscillatory systems, Proceedings of IAM, 8(2) (2019), 202-210.
- [17] Z. Odibat, Fractional power series solutions of fractional differential equations by using generalized taylor series, Appl. Comput. Math., 19(1) (2020), 47–58.
- [18] A. Ozyapici and T. Karanfiller, New integral operator for solutions of differential equations, TWMS J. Pure Appl. Math., 11(2) (2020), 131–143.
- [19] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993, 750 p.
- [20] E. Set, A. O. Akdemir, and F. Ozata, Gruss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function, Appl. Comput. Math., 19(3) (2020), 402–414.
- [21] V. I. Shurov, Technology and technique of oil production, Moscow, Nedra(in Russian), 1983, 510 p.
- [22] T. Tunc, M. Z. Sarikaya, and H. Yaldiz, Fractional Hermite Hadamards type inequality for the co-ordinated convex functions, 11(1) (2020), 3–29.
|