تعداد نشریات | 44 |
تعداد شمارهها | 1,304 |
تعداد مقالات | 15,973 |
تعداد مشاهده مقاله | 52,333,630 |
تعداد دریافت فایل اصل مقاله | 15,097,927 |
مطالعه عددی اثر سرعت ورودی در فرایند سیلابزنی مخازن نفت در مقیاس حفره برای سطوح با ترشوندگی مختلف | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 9، دوره 52، شماره 2 - شماره پیاپی 99، مرداد 1401، صفحه 79-88 اصل مقاله (718.19 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.46611.2929 | ||
نویسندگان | ||
حسین نصیری1؛ علیرضا جلالی* 2؛ سید محمد فاطمی3 | ||
1کارشناس ارشد مهندسی مکانیک، دانشکده مهندسی مکانیک دانشگاه تهران، تهران، ایران | ||
2استادیار، دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران | ||
3کارشناس ارشد مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
هرساله تعداد مخازن نفت بیشتری به افت فشار و کاهش نرخ تولید دچار میشوند. فرایند سیلابزنی یکی از این روشهای مرسوم برای افزایش میزان تولید نفت است. سرعت سیال تزریقی به داخل محیط متخلخل در شرایط مختلف فیزیکی میتواند مقدار نفت متفاوتی را از حفرات خارج کند. با توجه به هندسه فضایی و ترکیب قرارگیری حفرات، سرعت سیال وارده به هر حفره محدوده گستردهای دارد. در این پژوهش به بررسی اثر سرعت سیال در سه حالت حفره با سطوح آبدوست، آبگریز و ترشوندگی خنثی پرداخته شدهاست. این کار با استفاده از شبیهسازی عددی با نرمافزار Ansys-Fluent و در مقیاس یک حفره 1 میلیمتری حاوی نفت با لزجت متوسط انجام شدهاست. نتایج حاصل از این پژوهش نشان میدهد که برای حفره با یک خروجی در حالت آبدوست و ترشوندگی خنثی، همه نفت در تمام سرعتها از حفره خارج میشود. اما برای حفره با دو خروجی، تنها در حالتی که سطح حفره آبدوست باشد تمام نفت از آن خارج میشود و برای حفره با ترشوندگی خنثی 78 درصد از حجم نفت خارج میشود. برای حفره با سطح آبگریز نیز با افزایش سرعت سیال ورودی نفت کمتری از حفره خارج شد و ضریب بازیابی بین 7/63% و 5/98% حاصل شد. | ||
کلیدواژهها | ||
سیلابزنی؛ نانوذرات؛ سورفاکتنت؛ مقیاس حفره؛ شبیه سازی عددی؛ سرعت سیال | ||
مراجع | ||
[1] Taber J. and Seright R., Horizontal injection and production wells for EOR or waterflooding, in Permian Basin Oil and Gas Recovery Conference, Society of Petroleum Engineers, 1992.
[2] Han M., Xiang W., Zhang J., Jiang W., and Sun F., Application of EOR technology by means of polymer flooding in Bohai Oilfields, in International oil & gas conference and exhibition in China, Society of Petroleum Engineers, 2006.
[3] Keykhosravi A. and Simjoo M., Insights into stability of silica nanofluids in brine solution coupled with rock wettability alteration: An enhanced oil recovery study in oil-wet carbonates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 583, p. 124008, 2019.
[4] Hendraningrat L., Li S., and Torsæter O., A coreflood investigation of nanofluid enhanced oil recovery, Journal of Petroleum Science and Engineering, vol. 111, pp. 128-138, 2013.
[5] Kazemzadeh Y., Shojaei S., Riazi M., and Sharifi M., Review on application of nanoparticles for EOR purposes: A critical review of the opportunities and challenges, Chinese Journal of Chemical Engineering, vol. 27, no. 2, pp. 237-246, 2019.
[6] Armstrong R. T. and Wildenschild D., Investigating the pore-scale mechanisms of microbial enhanced oil recovery, Journal of Petroleum Science and Engineering, vol. 94, pp. 155-164, 2012.
[7] Hirasaki G. J., Miller C. A., and Puerto M., Recent advances in surfactant EOR, in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2008.
[8] Aoudia M., Al‐Shibli M. N., Al‐Kasimi L. H., Al‐Maamari R., and Al‐bemani A., Novel surfactants for ultralow interfacial tension in a wide range of surfactant concentration and temperature, Journal of surfactants and detergents, vol. 9, no. 3, pp. 287-293, 2006.
[9] Li S., Torsæter O., Lau H. C., Hadia N. J., and Stubbs L. P., The impact of nanoparticle adsorption on transport and wettability alteration in water-wet Berea sandstone: an experimental study, Frontiers in Physics, vol. 7, p. 74, 2019.
[10] Karnanda W., Benzagouta M. S., AlQuraishi A., and Amro M. M., Effect of temperature, pressure, salinity, and surfactant concentration on IFT for surfactant flooding optimization, Arabian Journal of Geosciences, vol. 6, no. 9, pp. 3535-3544, 2013/09/01 2013.
[11] Lu J. et al., Enhanced oil recovery from high-temperature, high-salinity naturally fractured carbonate reservoirs by surfactant flood, Journal of Petroleum Science and Engineering, vol. 124, pp. 122-131, 2014.
[12] Pordel Shahri M., Shadizadeh S., and Jamialahmadi M., A new type of surfactant for enhanced oil recovery, Petroleum science and technology, vol. 30, no. 6, pp. 585-593, 2012.
[13] Teklu T. W., Alameri W., H. Kazemi H., and Graves R. M., Contact angle measurements on conventional and unconventional reservoir cores, in Unconventional Resources Technology Conference, San Antonio, Texas, , pp. 2297-2311: Society of Exploration Geophysicists, American Association of Petroleum , 2015.
[14] Nwidee L. N., Al-Anssari S., Barifcani A., Sarmadivaleh M., Lebedev M., and Iglauer S., Nanoparticles influence on wetting behaviour of fractured limestone formation, Journal of Petroleum Science and Engineering, vol. 149, pp. 782-788, 2017.
[15] Rezvani H., Khalilnezhad A., Ganji, and P. Kazemzadeh Y., How ZrO2 nanoparticles improve the oil recovery by affecting the interfacial phenomena in the reservoir conditions, Journal of Molecular Liquids, vol. 252, pp. 158-168, 2018.
[16] Lu T., Li Z., Zhou Y., and Zhang C., Enhanced Oil Recovery of Low-Permeability Cores by SiO2 Nanofluid, Energy & Fuels, vol. 31, no. 5, pp. 5612-5621 2017.
[17] Alvarez J. O. and Schechter D. S., Wettability alteration and spontaneous imbibition in unconventional liquid reservoirs by surfactant additives, SPE Reservoir Evaluation & Engineering, vol. 20, no. 01, pp. 107-117, 2017.
[18] Kathel P. and Mohanty K. K., EOR in tight oil reservoirs through wettability alteration, in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2013
[19] Jafari A., Pour S. E. F., and Gharibshahi R., CFD simulation of biosurfactant flooding into a micromodel for enhancing the oil recovery, Int J Chem Eng Appl (IJCEA), 2016.
[20] Rostami P., Sharifi M., Aminshahidy B., and Fahimpour J., The effect of nanoparticles on wettability alteration for enhanced oil recovery: micromodel experimental studies and CFD simulation, Petroleum Science, vol. 16, no. 4, pp. 859-873, 2019.
[21] Nandwani S. K., Chakraborty M., and Gupta S., Chemical flooding with ionic liquid and nonionic surfactant mixture in artificially prepared carbonate cores: A diffusion controlled CFD simulation, Journal of Petroleum Science and Engineering, vol. 173, pp. 835-843, 2019.
[22] Zhao J. and Wen D., Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery, RSC advances, vol. 7, no. 66, pp. 41391-41398, 2017.
[23] Mehraban M. F., Rostami P., Afzali S., Ahmadi Z., Sharifi M., and Ayatollahi S., Brine composition effect on the oil recovery in carbonate oil reservoirs: A comprehensive experimental and CFD simulation study, Journal of Petroleum Science and Engineering, vol. 191, p. 107149, 2020/08/01/ 2020.
[24] Hemmat Esfe M., Esfandeh S., and Hosseinizadeh E., Nanofluid flooding in a randomized heterogeneous porous media and investigating the effect of capillary pressure and diffusion on oil recovery factor, Journal of Molecular Liquids, vol. 320, p. 113646, 2020/12/15/ 2020.
[25] Hemmat Esfe M., Esfandeh S., and Hosseinizadeh E., Nanofluid flooding for enhanced oil recovery in a heterogeneous two-dimensional anticline geometry, International Communications in Heat and Mass Transfer, vol. 118, p. 104810, 2020/11/01/ 2020.
[26] خسروی ر.، چهاردولی م.، سیمجو م., مدل سازی عددی فرآیند آشام خودبخودی آب در یک بلوک مخزن شکافدار و بررسی اثر شرایط مرزی مختلف بر بازیافت نفت, مهندسی مکانیک دانشگاه تبریز، دوره 51، شماره 4
[27] Mai A. and Kantzas A., Heavy oil waterflooding: effects of flow rate and oil viscosity, Journal of Canadian Petroleum Technology, vol. 48, no. 03, pp. 42-51, 2009.
[28] Arab D., Kantzas A., and Bryant S. L., Effects of oil viscosity and injection velocity on imbibition displacement in sandstones, in SPE Canada Heavy Oil Conference, 2020
[29] Golabi E., SEYEDIN A. F., and AYAT E. S., Chemical induced wettability alteration of carbonate reservoir rocks, 2009.
[30] Manshad A. K., Rezaei M., Moradi S., Nowrouzi I., and Mohammadi A. H., Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding, Journal of Molecular Liquids, vol. 248, pp. 153-162, 2017/12/01/ 2017.
[31] Treiber L. and Owens W., A laboratory evaluation of the wettability of fifty oil-producing reservoirs, Society of petroleum engineers journal, vol. 12, no. 06, pp. 531-540, 1972.
[32] van der Wijngaart W., Capillary pumps with constant flow rate, Microfluidics and nanofluidics, vol. 16, no. 5, pp. 829-837, 2014. | ||
آمار تعداد مشاهده مقاله: 211 تعداد دریافت فایل اصل مقاله: 168 |