
Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

Adapting Swarm Intelligence Based Methods

for Test Data Generation

M. M. Dejam Shahabi1; S. E. Beheshtian2; P. Badiei3; R. Akbari4,*; S. M. R. Moosavi5

1- Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran,

Email: m.shahabi@sutech.ac.ir

2- Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran,

Email: beheshtian@sutech.ac.ir

3- Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran,

Email: oossparsa@gmail.com

4- Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran,

Email: akbari@sutech.ac.ir

*Corresponding author
5- Department of Computer Science, Engineering and Information Technology, Shiraz University, Shiraz, Iran,
Email: smmosavi@shirazu.ac.ir

Received: 2020-08-15

Revised: 2020-12-08

Accepted: 2021-02-07

Abstract To achieve high-quality software, different tasks such as testing should be performed. Testing is known as a

complex and time-consuming task. Efficient test suite generation (TSG) methods are required to suggest the best data for

test designers to obtain better coverage in terms of testing criteria. In recent years, researchers to generate test data in

time-efficient ways have presented different types of methods. Evolutionary and swarm-based methods are among them.

This work is aimed to study the applicability of swarm-based methods for efficient test data generation in EvoSuite. The

Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Teaching Learning Based Optimization (TLBO), and

Imperialist Competitive Algorithm (ICA) are used here. These methods are added to the EvoSuite. The methods are

adapted to work in a discrete search space of test data generation problem. Also, a movement pattern is presented for

generating new solutions. The performances of the presented methods are compared over 103 java classes with two built-

in genetic-based methods in EvoSuite. The results show that swarm-based methods are successful in solving this problem

and competitive results are obtained in comparison with the evolutionary methods.

Keywords: Test data generation, Firefly Algorithm, Particle Swarm Optimization, Teaching Learning Based

Optimization, Imperialist Competitive Algorithm, EvoSuite

1. Introduction

Software plays an important role in every aspect of

our life. Any malfunction or lack of precision in software

can directly affect our lives and result in financial loss or

even death in some cases. To prevent any potential

damage, software needs to be tested before released.

Software testing is expensive and can cost up to 50% of

the software’s development cost. As testing and quality

assurance is a vital process for software, it cannot be

overlooked, so we need ways to reduce the cost of it and

yet improve the precision [1], [2]. Automated methods

have been used to enhance this process. Automated

methods, such as search-based software testing (SBST)

have been greatly noticed in recent years [3]. The search-

based methods formulate the test problem into a search

problem and search the problem space to find the proper

data to carry out the tests [4].

The importance of testing encouraged researchers to

develop different types of methods and suits such as

EvoSuite [5] to cope with its difficulties. The objective

of test data generation is to have a test suite that

maximizes coverage criteria [6]. Finding the input test

data that best serves our purpose of testing a software’s

behaviour is a challenging task. Search-based methods

are promising methods in test data generation. Search

based methods solve an optimization problem using

search algorithms to generate test cases and proper input

data for them [6].

In this paper, four modified swarm intelligence

algorithms (i.e. TLBO, PSO, Firefly, ICA) are used for

automatic test suite generation. Previous studies showed

that swarm intelligence methods have good performance

in solving hard engineering problems. It seems that the

swarm-based methods have the ability to show good

performance for test suite generation in comparison to

evolutionary methods such as GA. The idea of this work

is to study the capabilities of swarm-based algorithms to

search in discrete search spaces of TSG problem. The

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

184

proposed methods are implemented in EvoSuite [5]. We

select the EvoSuite because this tool showed better

performance at most of the benchmarks in comparison

with the other TSG tools.

The results obtained by the proposed methods are

compared with the results of two built-in genetic

algorithms (i.e. MonotonicGA, and StandardGA) in

EvoSuite. The results show that the swarm-based

methods have competitive performance in comparison

with the genetic-based methods. The dataset used here is

SF110 from SourceForge and eight coverage criteria are

considered.

The main contributions of this work are:

- Adapting swarm-based method to search in a

discrete search space of TSG problem in

EvoSuite.

- Studying the behaviour of these algorithms for

test data generation

- Presenting a new way to update solutions that are

generated by individuals in a swarm.

The remaining of the paper is organized as follows:

Related work is presented in the next section. Section 3

presents the swarm intelligence based methods for

generating test data. The performances of the proposed

methods in test data generation are reported in Section 4.

Finally, Section 5 concludes this work and suggests some

proposals as future works.

2. Related Work

Automatic test data generation methods can be

categorized into three types: random methods, dynamic

symbolic execution, and search-based methods. In this

work, we focus on search-based methods. In recent years,

different types of search-based methods have been

presented for test data generation in literature. Search

based methods use search algorithms for generating test

data. Most of the works in this field are based on GA and

its variants. However, some works employ swarm-based

methods for test suite generation. It seems that GA is a

good choice because it has shown good performance in

finding optimum solutions in discrete search spaces.

Bruce et al. presented a tool called Dorylus for TSG

[7]. Dorylus uses Ant Colony Optimization (ACO)

algorithm. They focused on branch distance and

Levenshtein distance as the fitness function and

compared their method with the implemented methods in

EvoSuite. The results showed Dorylus obtains better

coverage in comparison with the built-in methods in

Evosuite.

Rojas et al. extended EvoSuite to enable them to

combine multiple criteria [8]. They stated that generating

test cases for a single criterion may not be a good

indicator for evaluating an algorithm. Therefore, they

combined nine criteria and studied the performance of

EvoSuite under this combination. The results showed that

although combining the criteria decreases the constituent

coverage criteria slightly, but a significant growth up is

seen in the test suite.
Bruce et al. have presented a Tiered Ant Colony

Optimization (TACO) for generating unit tests [9]. The

proposed method has three tiers where the first and

second tiers are used for goal prioritization, and test

program synthesis respectively. The third tier generates

the test data for the program. They compared TACO with

the Randoop and EvoSuite tools. The experimental

results showed that EvoSuite has better performance than

TACO and Randoop.

Jatana and Suri presented an Improved Crow Search

Algorithm (ICSA) for TSG [10]. The ICSA improved the

search capability of the CSA by utilizing Cauchy random

numbers. They compared the proposed method with

some meta-heuristics. The results showed that the ICSA

generates a better test suite in comparison with the other

methods.

The performance of the Evolutionary Algorithms (EA)

for test suite generation has been studied by Campos et

al. in [11]. The authors stated that GA is the first choice

in the software engineering domain. Hence, they focused

on EA for test suite generation. They evaluated six

versions of EA. The results showed that using a test

archive helps the algorithms to obtain better coverage in

comparison with the random test.

Rojas et al. presented a whole test suite approach that

has been used in EvoSuite [12]. This method tries to

generate test suites as a whole and optimize them along

with iterations rather than the traditional method that

would target coverage goals individually by generating

separate test cases for them. This method proves to work

much better, achieving up to 18 times the coverage than

the traditional way. In addition to higher coverage, this

approach also generates smaller test suites due to a

reduction in search redundancy and overlapping in goal

coverage of the test cases.

Shahabi et al. extended the EvoSuite by

implementing Particle Swarm Optimization (PSO) and

Teaching Learning Based Optimization (TLBO) [13],

[14]. They studied the performance of these swarm-based

methods for TSG in comparison with the GA-based

methods of EvoSuite. Their study showed that these

swarm-based methods generate competitive results in

comparison with the GA methods. However, the GA

methods surpass PSO and TLBO in most of the coverage

criteria.

The applicability of unit test generation tools on

industrial projects has been studied by Almasi et al. [15].

They studied the performance of EvoSuite and Randoop

for finding faults in life insurance software. The results

showed that Evosuite has better performance than

Randoop.

Shamshiri et al. studied the behaviour of evolutionary

search against the random search for TSG in object-

oriented software [16]. They applied EvoSuite for unit

test generation over 1000 classes randomly selected from

SF100 projects. Their study showed that although

evolutionary searches are better for covering complex

branches, the random search may be enough for

obtaining a good coverage level in most of the classes.

Oliveira et al. studied the effect of features of object-

oriented classes on the effectiveness of the automated

TSG tools [17]. They found that some object-oriented

metrics such as coupling and number of methods make

software to be hard to test by different techniques.

The performance of search-based unit test generation

methods may depend on their ability in controlling

diversity when exploring the search space. Albunian

studied the effect of population diversity in unit test

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

185

generation [18]. For this purpose, he examined different

ways of diversity control in GA. His study showed that

increasing the population diversity increases the length of

the individual rather than improving the coverage.

In another study, Gay showed that combining

coverage criteria helps the search-based test suite

generation methods to generate test suites that are more

effective for detecting faults in the CUTs [19]. He

mentioned that search-based methods show good

performance on the coverage criteria. But, they are

ineffective in finding faults.

As another work for empowering the search-based

test generation methods, Olsthoorn et al. used model

seeding to add some information to the methods [20].

They used the proposed method for test generation on the

Gson using EvoSuite.

In automating TSG, usually testing tools are used to

save time and decrease the cost of testing. In recent years,

some testing tools have been developed for this purpose.

The effectiveness of automated testing tools such as

EvoSuite against manual testing has been studied by

Serra et al. [21]. They compared manual testing against

EvoSuite, Randoop, and JTExpert in terms of mutation

score, code coverage, and fault detection. The

experiments showed that automatic test generation tools

improve code coverage and mutation score in

comparison with manual testing. However, improvement

in fault detection is not significant.

Rudžionienė et al. presented a method that uses

multiple search targets for test generation [22]. They

presented their method as a tool and compared it with the

other test generation tools that use search-based methods.

Almulla and Gay studied the effect of Adaptive

Fitness Function Selection (AFSS) on the diversity of the

generated test suites [23]. They found that using AFFS

helps the automated TSG tools to generate more diverse

test suites in comparison with the test suites that are

generated using static fitness functions.

Using the information in the source code can help

search-based test suite generation methods to produce

better test cases [24]. As an example, Evers et al. used the

commonality score to measure the distance between the

execution path of a test case and the common/uncommon

execution pattern observed during the execution of the

software. Using commonality as an objective in EvoSuite,

they found that the generated test cases have better

commonality score.

3. Problem formulation

The problem considered in this work is known as test

data generation where the objective is to generate a test

suite to optimize some criteria. A test suite is a set of test

cases. The test cases are used by software testers to test

the class under test (CUT). Each test case is composed of

different parts. The main parts are inputs, the sequence of

statements, and execution conditions.

When we solve test data generation using swarm-

based methods, we should model it as a search problem.

For this purpose, an objective or fitness function should

be defined. By defining the fitness function, a swarm-

based method tries to optimize the fitness function by

searching the search space and finding the optimal

position in this space. Generally, the search problem is

modeled as:

max 𝑓𝑡𝑒𝑠𝑡_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑆𝑢𝑖𝑡𝑒) (1)

In this model, 𝑡𝑒𝑠𝑡_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 is the coverage criteria

that should be maximized. Hence, each algorithm tries to

find a test suite that optimizes the selected criterion.

Many criteria in software testing can be used as a fitness

function. Here, we use eight criteria to assess the

performance of the proposed algorithms: 1) line coverage,

2) branch coverage, 3) exception coverage, 4) weak

mutation coverage, 5) output coverage, 6) method

coverage, 7) method no-exception coverage, and 8) c-

branch coverage.

4. The Proposed Methods

In recent years, researchers have proposed a large

class of swarm-based optimization algorithms. These

methods have shown satisfactory results in solving

engineering problems. Usually, these methods have been

used when computation time is important. These methods

have the ability to provide near-optimal (in some cases

even optimal) solutions in an acceptable time. Based on

this fact, in this work, several swarm intelligence

algorithms are adopted and implemented into the

EvoSuite and their performances are evaluated. These

methods are selected as representatives of swarm-based

optimization techniques. We have tried to select methods

with different optimization behaviours. The selected

methods are different in terms of movement patterns,

social/psychological impacts, neighbourhood, leader

selection, and other important factors in optimization

methods. These methods are based on:

1) Particle Swarm Optimization (PSO),

2) Teaching Learning Based Optimization (TLBO),

3) Firefly Algorithm (FA),

4) Imperialist Competitive Algorithm (ICA).

All the algorithms in their standard forms have been

designed for optimizing continuous problems. Also, a

strategy is proposed for the movement operator which

makes it applicable to a discrete search space of the test

data generation problem.

The overall structure of the proposed methods is

presented in Fig. 1. Each method starts by initializing the

swarm using the built-in module of EvoSuite. To use a

certain algorithm for the optimization, an initial

population is randomly generated using the provided

methods in EvoSuite [25], [26]. This phase is similar in

all the proposed algorithms. After that, the update phase

(the main module) of the proposed method starts. For this

module, four suggested algorithms (i.e. TLBO, PSO,

Firefly, and ICA) are used separately.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

186

Fig. 1. The overall structure of the proposed methods.

The method updates the solutions cycle by cycle until

the termination condition is met. To update the current

solution, an optimization algorithm needs to compute the

quality of its individuals based on a fitness function. The

EvoSuite based on the selected metric calculates the

fitness of an individual in the swarm. More precisely, the

built-in metrics of EvoSuite such as code coverage is

used as the fitness function. After termination, the best

result is reported by the algorithm. The details of the

swarm-based methods are described in the following sub-

sections. However, we need to represent the movement

operator and solution representation before the

description of the proposed methods.

It should be noted that EvoSuite has many classes and

has its complexities. However, for the sake of simplicity,

the functionalities of EvoSuite which are directly used by

the proposed method are shown by dummy names in the

following figure. It is assumed that Init module initializes

the individual, Metric module computes the fitness of

individuals, and Mutation module is used to mutate

individuals.

4.1. Discrete and Continues Space Operators

In every evolutionary algorithm, the evolutionary

mechanism is done by several operators. The two

mechanisms responsible for altering the individuals are

called crossover and mutation. In discrete search spaces

like what a classic genetic algorithm works in,

individuals get crossed over with each other to generate

offspring. Moreover, usually, a part of the population is

mutated as well. On contrary, for algorithms in the swarm

intelligence paradigm that works in continuous search

spaces, the new generation is not born in every iteration

but it is the same population that gains more experience

in every iteration. This experience is improved by

moving the individuals in the search space according to a

movement strategy to find the best area (i.e. a point with

the best fitness value) in the search space. The movement

strategies are usually designed to work with continuous

decision variables.

Most of the swarm intelligence based methods in their

basic form have been proposed to work in continuous

search spaces. The test data generation problem has a

discrete search space. Hence, we need to adopt the

proposed methods in such a way to work with this

discrete problem. For this purpose, in this paper, a

movement strategy is proposed that enables the swarm

intelligence algorithms, which in nature are of continuous

type, to work in discrete search spaces. As in the classic

swarm intelligence algorithm, this strategy is based on

the main factor of the swarm intelligence paradigm which

is the communication between individuals telling each

other the best point they have found so far. The details of

the movement strategy are given in Section 4.3.

4.2. Solution Representation

Solution representation plays an important role in the

success of an optimization method. Hence, we need to

pay more attention to this. The representation proposed

by the EvoSuite designers has a good structure that

appropriately shows the test suits and test cases. Hence,

in this work, the authors prefer to use the representation

which is the same as what has been used in the EvoSuite

tool [25]. This representation has been basically proposed

for GA-based methods. In the genetic coding model that

has been used in these algorithms, every member is

represented as a chromosome, and the attributes of each

individual are determined by its genes. In terms of test

data generation, test cases and test suites are both

represented as chromosomes. At the test suite level, a

chromosome’s genes are corresponding to test cases. At

the test case level, genes are statements in a test case.

Statements are of various types: Method calls, primitive

statements (variable declaration), constructor statements

(that create classes), field statements (accessing public

members of a class), and assignment statements.

4.3. Proposed Movement Operator

The operator requires two inputs, a source individual

and a destination. A movement rate is also used in the

movement that is set as the algorithm’s parameter in the

configurations. The operator makes a list of each

individual’s attributes (i.e. test cases or statements) and

determines attributes exclusive to the destination. As this

movement works on both test suite and test case levels;

on the test suite level, to determine candidates, test cases

are prioritized based on their coverage. Test cases with

exclusive goal coverage have higher priority. However,

on the test case level, there is no specific prioritization

for the statements except their exclusive existence in the

destination test case. Then according to the provided rate,

a number of the attributes are added to the source from

the destination. This process leaves the destination as it

is and only changes the source by adding it to its list. It

should be noted that as this movement operator works in

discrete spaces, the movement is not in vector form

unlike the classical algorithms of the swarm intelligence

paradigm.

4.4. TLBO Algorithm

TLBO is the first swarm intelligence technique that is

used in the update module of the proposed method given

in Fig. 1. TLBO [27] is a successful algorithm in solving

NP-Hard problems which has been proposed by Rao. The

proposed TLBO method uses the representation given in

Section 4.2 and updates solutions by incorporating

Initialize swarm

Report Best Solution

Terminate?

Evaluate Solutions

Update Solutions

EvoSuite

Init Module

Metric Module

Mutation Module

T
L

B
O

P
S

O

F
irefly

IC
A

Other Modules…

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

187

movement operators into the update phases of the classic

TLBO algorithm.

In general, this algorithm simulates the teaching and

learning mechanisms in a class. In other words, a social

and psychological phenomenon in a class between

teacher and students is considered. The swarm (or

population) in this algorithm consists of students and a

teacher which is the best student in every iteration.

Students both learn from their teacher and tutor each

other. A student with a higher score has a higher coverage

percentage in terms of software testing. The procedure of

the proposed TLBO algorithm, which is based on classic

TLBO, with the proposed movement operator, is

described in Fig. 2. Apart from the initialization phase,

the main body of the TLBO has two phases that are

known as teaching and learning.

A) Initialization: The main task in the initialization

phase is assigning the first values for the individuals of

the swarm. This could be done randomly. The proposed

algorithm receives a randomly generated population as

input. For this purpose, the random method of EvoSuite

is used. Each student of the class (i.e. population)

represents a test case or a test suite depending on the level

of optimization the algorithm is working at. Besides

defining the first values of individuals, the parameters of

the algorithm such as termination condition should be set

at this phase.

Initialize the position of individuals using Evosuite Init

module

 Set number of students, termination condition

While (termination condition not met)

Calculate the mean of decision variables

Identify the best solution as the teacher

Identify the movement percentage based on the

average and a random number

Modify solution based on the best solution

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − (𝑇𝐹)𝑀𝑒𝑎𝑛)

If the new solution better than existing

Accept the solution

Mutate the solution

Else

Reject the solution

End If

Select two solutions randomly 𝑋𝑖 and 𝑋𝑗

If 𝑋𝑖 better than 𝑋𝑗

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑖 − 𝑋𝑗)

Else

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑗 − 𝑋𝑖)

End If

If the new solution better than existing

Accept the solution

Mutate the solution

Else

Reject the solution

End If

End While

Return the best solution
__

Fig. 2. Pseudocode of the proposed TLBO algorithm

B) Teaching phase: By initializing, the TLBO updates

individuals (here called students) through teaching and

learning phases. The teaching and learning phases iterate

cycle by cycle until the termination condition is met. At

each cycle, all the students are evaluated using the Metric

module of the EvoSuite, and the one with the highest

score (i.e. coverage percentage) is chosen as the teacher.

Then all the other students move toward the teacher to

improve their fitness using the proposed movement

pattern:

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − (𝑇𝐹)𝑀𝑒𝑎𝑛) (2)

where, 𝑋𝑜𝑙𝑑 , 𝑋𝑛𝑒𝑤 are the current and next positions of a

student respectively. 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 is the position of the

teacher, 𝑟 is a random parameter that brings stochasticity

to the algorithm, and (𝑇𝐹)𝑀𝑒𝑎𝑛 shows the mean

positions of the students. This means that all the students

share their knowledge for updating positions with each

other. The new solution is accepted and mutated if a

better position in the search space has been achieved by

the update formula. The solution is mutated by the

Mutation module of EvoSuite. Otherwise, the new

solution is discarded. This movement pattern models a

greedy approach for updating positions.

C) Learning phase: The update phase continues with

the learning phase. In this phase students tutor each other,

meaning that each student chooses a classmate randomly

and compares its score with it. In case that the chosen

classmate 𝑋𝑖 (by student 𝑋𝑗) has a higher score, the

student moves toward it using:

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑖 − 𝑋𝑗) (3)

Otherwise, the student moves away from the classmate

using:

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑗 − 𝑋𝑖) (4)

In the learning phase, the greedy approach is used to

accept or reject the new solution. The solution is updated

if it obtains better fitness.

D) Stopping conditions: As this algorithm, works

iteratively for its optimization purpose, certain conditions

stop the algorithm. At the end of every iteration, the

whole population is evaluated and if a student scores a

certain coverage percentage (set as a parameter to the

algorithm), the algorithm stops and returns that student

as the best-found answer. In addition to that, a certain

number of iterations or a limited time for running can also

be set as stopping conditions. If none of the conditions

are met, the algorithm continues from step B.

4.5. PSO Algorithm

As the second method to update solutions, PSO is

used. It can be said that PSO is a classic and well-known

swarm-based method that has been extensively used by

researchers to solve engineering problems. PSO 0like

every swarm intelligence algorithm uses two search

mechanisms to balance exploration and exploitation. At

first and in the initial iterations, PSO mostly explores the

search space to cover more ground. Throughout the

search with a decrease in exploration, PSO focuses on the

superior areas found in the search space and exploits

them [29].

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

188

PSO works according to the following strategy shown

in Fig. 3. After initialization, the method improves

solutions by two phases: 1) determining personal and

global best positions, 2) updating positions. By

terminating the algorithm, the best solution is reported as

output.

A) Initialization: The initial population is generated

by randomly generating particles (i.e. test suites and test

cases) and spreading them throughout the search space.

Similar to other methods the provided random

initialization method of EvoSuite is used for this purpose.

After initialization, the personal best of each particle

should be determined. These initial positions are

considered as the particles’ personal best. Also, the gbest

is selected as the best initial position. Like the TLBO, the

input parameters are set at this phase.

B) Determining personal and global best positions:

After initialization, in this step, the fitness value for every

particle is calculated and the particle with the best fitness

value among the population is selected as the global best.

The fitness value of the current position is compared to

the best personal position’s fitness value. If the current

position has a better fitness (i.e. higher coverage) it is set

as the personal best position.

C) Update (particle velocity and position): The first

movement is a mutation done by the provided mutation

method in EvoSuite which randomly adds or removes test

cases in a test suite or statements in a test case. Particles

have two consecutive movements. The first is toward the

global best position based on the following formula

which is adopted from the traditional PSO algorithm.

𝑋𝑡+1 = 𝑋𝑡 + 𝑉𝑔𝑏

𝑉𝑔𝑏 = 𝐶1(𝑋𝑔𝑏 − 𝑋𝑡)

(5)

(6)

In the formula above, Xt is the current particle, Xgb is

a copy of the global best particle and C1 is the gb

movement rate set as a parameter to the algorithm.

(𝑋𝑔𝑏 − 𝑋𝑡) is attained by removing the mutual test cases

from Xgb. C1 determines the percentage of the exclusive

test cases of the global best particle to be copied to the

current particle. In this way, the resulting particle after

the movement is closer to the global best particle in terms

of its attributes (i.e. statements or test cases).

The second movement is done similarly except

towards the personal best particle.

𝑋𝑡+1 = 𝑋𝑡+1 + 𝑉𝑝𝑏

𝑉𝑝𝑏 = 𝐶2(𝑋𝑝𝑏 − 𝑋𝑡+1)

(7)

(8)

Xt+1 is the resulting particle from the previous movement,

Xpb is the personal best particle and C2 is the pb

movement rate set as a parameter to the algorithm.

The age is updated according to the number of

iteration. This procedure is repeated for every particle in

the population. As mentioned before the movement

operator is a discrete operator which means unlike the

classical PSO [28], [29] that particles move in vector

forms, here there is no summation on movements and

both movements are done separately.

Initialize the position of individuals using Evosuite Init

module

 Set number of students, termination condition

While (termination condition not met)

Identify the best solution as Global Best

Identify the best position in each individual

history as Personal Best

Identify the movement percentage given as a

parameter to the algorithm

Modify solution based on Global and Personal

Best

𝑋𝑡+1 = 𝑋𝑡 + 𝑉𝑔𝑏

𝑉𝑔𝑏 = 𝐶1(𝑋𝑔𝑏 − 𝑋𝑡)

𝑋𝑡+1 = 𝑋𝑡+1 + 𝑉𝑝𝑏

𝑉𝑝𝑏 = 𝐶2(𝑋𝑝𝑏 − 𝑋𝑡+1)

If the new solution better than existing

Accept the solution

Mutate the solution

Else

Reject the solution

End While

Return the best solution
__

Fig. 3. Pseudocode of the proposed PSO algorithm

D) Stopping conditions: As this process can go on

forever without finding the absolute best position in the

search space, there are several stopping conditions in

place. Run time, the number of iterations, and a certain

fitness value threshold are used for this purpose. The

algorithm checks the stopping conditions and if not met,

continues from step B. After termination of the algorithm,

the global best particle is given as the output.

4.6. ICA Algorithm

The ICA is the third method that is used to update

solutions. This algorithm is based on the classic ICA [30]

with the proposed movement operator. ICA works

according to the following strategy shown in Fig. 4. The

imperialist competitive algorithm is inspired by the

imperialistic behaviour of some dominant countries in

history. Imperialism is the act of expanding a country’s

power beyond its borders. In this strategy, instead of

directly ruling a country, the imperialist state controls it

indirectly by some less obvious ways like controlling its

market and economy.

The algorithm uses elements to represent the political

phenomenon described earlier. The individuals are

countries, which can be of two types, imperialist, and

colony. A group of countries together form an empire and

all the empires together form the population. Empires are

consisted of imperialist and other countries as its colonies.

Initialize individuals using Evosuite Init module

 Set number of countries, termination condition

While (termination condition not met)

Identify Empires based on their cost

Identify distribute countries between empires

Modify solution based on the emperor in each

empire

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑒𝑚𝑝𝑒𝑟𝑜𝑟 − 𝑋𝑜𝑙𝑑)

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

189

Mutate random solution known as revolution

function

Search to replace the emperor with a better

country based on their costs in each empire

Search for the weakest empire, remove one

colony from it, and add it to another empire

End While

Return the best solution
__

Fig. 4. Pseudocode of the proposed ICA algorithm

Regarding the problem representation, test suites and

test cases are both represented as countries. The fitness

function is the coverage percentage in a specific coverage

criterion. After initialization, the ICA method updates

solution through five phases: 1) choosing imperialists

and forming empires, 2) update (or assimilation), 3)

revolution, 4) empire competition, and 5) inter empire

competition. By terminating the method, the best solution

is reported as the output.

A) Initialization: Like other swarm-based algorithms,

the initial swarm is a randomly generated population.

This random method is the same as what is used in

EvoSuite. Although, parameters of ICA are set at this

phase.

B) Choosing imperialists and forming empires: A part

of countries (set as a parameter) with the best fitness

value (i.e. highest coverage percentage) is selected as

imperialists. The rest of the countries in the world

(population) are divided into different groups called

empires, each empire is assigned to an imperialist and

forms the colonies for the corresponding imperialist.

C) Update (assimilation): This phase optimizes the

swarm using the proposed movement method. Colonies

move toward their imperialist by receiving attributes

from it.

The proposed movement operator gets the source

colony and the imperialist as its inputs. A movement rate

is defined as a parameter for this algorithm that

determines what portion of the imperialist’s attributes (i.e.

test cases or statements) should be given to the colony to

move the colony closer to the imperialist.

D) Revolution: In this phase, a mutation is done on all

the population. This mutation again is the built-in

mutation operator of the EvoSuite.

E) Intra empire competition: After the revolution, a

colony might have reached a better point in the search

space (a higher coverage percentage), in this case, the

colony is selected as the new imperialist for that empire.

F) Inter empire competition: In this step, the total

power for every empire is calculated and the weakest

colony of the weakest empire is removed and added to

another empire which itself is chosen by the Boltzmann

formula (unlike the classic ICA).

𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑒𝑚𝑝𝑖𝑟𝑒

= 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝐼𝑀𝑃𝐸𝑅𝐼𝐴𝐿𝐼𝑆𝑇)

+ ∑ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒)

𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝑣𝑎𝑙𝑒𝑚𝑝𝑖𝑟𝑒

=
𝑒−𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑒𝑚𝑝𝑖𝑟𝑒 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚

∑ 𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑒𝑚𝑝𝑖𝑟𝑒

(9)

(10)

The total power calculation for an empire takes two

parameters; the imperialist power which is its coverage

percentage and the summation of the power of the

colonies. To choose a host for the removed colony,

Boltzmann value for every empire is calculated and the

empire with the highest value takes the removed colony.

After this step if an empire is left without any colonies,

that empire is eliminated and the imperialist is added to

another empire again chosen by the Boltzmann value.

G) Stoppin-g conditions: If the algorithm runs for

long enough, all the empires except the most powerful

one collapse, and all the colonies are in the same empire

with one imperialist. In this empire, all the colonies have

the same fitness value as each other as well as the

imperialist, in this case, the algorithm is stopped and the

imperialist is given as the best-found answer. If otherwise,

a certain stopping condition like running time, number of

iterations, or a specific coverage percentage in a country

will stop the algorithm and return the best (highest

coverage percentage) country found, as the answer. If

none of the stopping conditions are met, the algorithm

continues from step C.

4.7. Firefly Algorithm

Firefly algorithm is another swarm intelligence

paradigm algorithm that is inspired by the flashing

behaviour of fireflies [31]. Firefly works according to the

following strategy shown in Fig. 5. In nature, fireflies

flash a chemically produced light to attract each other. In

the firefly algorithm modeling, all fireflies are unisexual

and any individual firefly can attract another one. The

attraction between two fireflies is proportional to their

brightness, the brighter one attracts the less bright firefly.

In addition to the brightness, the distance between two

fireflies has a negative correlation with the attraction

between them. The last rule is that if there is a situation

where there are no fireflies brighter than the given one, it

will move toward another firefly randomly.

Regarding problem representation, both test suites

and test cases are regarded as fireflies. The cost function

is represented as the brightness of a firefly, the brighter it

is the more coverage it has.

A) Initialization: The population with the given size

as the algorithm’s parameter is generated randomly via

the given random method in the EvoSuite. Also, the

parameters of the algorithm are set based on the

determined configuration.

B) Update (movement): The proposed movement

operator gets two fireflies as its inputs. Based on their

brightness and distance the attractiveness between them

is calculated to determine which one moves toward the

other.

B = B0 . e-γ . r^2 ≈
B0

1 + γr2

(11)

Y is a parameter set to the algorithm and the higher B is

for a firefly the more attractive it looks to the other

fireflies. rij is the distance representative between the two

fireflies calculated by the formula below.

𝑟𝑖𝑗 = (𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖 − 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑗)
2
 (12)

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

190

According to the movement rate that is defined as a

parameter for this algorithm, a portion of the destination

firefly’s attributes (i.e. test cases or statements) is given

to the moving firefly. This comparison of attractiveness

and movement is done for every pair of fireflies in the

population.

C) Stopping conditions: Like the other algorithms,

there are certain rules to stop the iterative procedure of

the algorithm.

Initialize the individuals using Evosuite Init module

 Set number of fireflies, termination condition

While (termination condition not met)

For all fireflies

 For all other fireflies

 If another firefly is better than this

one

 𝑩 = 𝑩𝟎 ∗ 𝒆−𝒓𝟐

𝑋𝑛𝑒𝑤𝑇ℎ𝑖𝑠 = 𝑋𝑜𝑙𝑑𝑇ℎ𝑖𝑠 +
𝑟𝐵(𝑋𝑜𝑡ℎ𝑒𝑟 − 𝑋𝑡ℎ𝑖𝑠)

End While

Return the best solution
__

Fig. 5. Pseudocode of the proposed Firefly

The time for running, certain coverage (brightness) in a

firefly, or the number of iterations. If none of the

conditions are met at this step, the algorithm continues

from step B.

5. Performance Study

In this section, the applicability and performance of

the proposed swarm intelligence based methods are

presented. First, the setting of the experiments and

configuration of the methods are presented, and then the

experimental results are reported. Finally, the overall

performance sub-section gives the obtained results

generally.

5.1. Experimental Setup

The proposed methods have been integrated into

EvoSuite as a platform to test their performance. In

addition to the four algorithms introduced in this paper, 2

algorithms of the genetic family (i.e. Standard GA and

Monotonic GA) have also been studied and a comparison

has been made among them. The proposed methods use

built-in functionalities of EvoSuite for mutation, solution

representation, objective function computation, and

initialization of individuals.

The data set used here is downloaded from

SourceForge, an online code repository. 103 classes are

randomly selected from the SF110 data set. The selected

classes have been coded in Java. The selected classes

have different features (e. g. number of methods, line of

codes, number of branches, and number of exceptions).

All the classes have been studied with all 6 algorithms.

Each algorithm works in eight criteria on separate

procedures. As there are about 5000 rows of outputs, the

performance of each algorithm in each of the criteria has

been summarized in the tables presented in this section.

The results presented are attained with the following

configurations for the algorithms are given in Table I.

Some of the parameters are used in common and some of

them are exclusive to an algorithm. The size of the swarm

is set at 50, and methods terminate after a predefined

number of iterations.

Each algorithm has been evaluated 10 times and the

average results are computed and presented in Section

5.2. For a fair comparison, the total goals and achieved

goals are used in the experiments. At each run, EvoSuite

determines total goals and reports the number of goals

achieved by an algorithm. The average performance is

computed by dividing achieved goals by the total goals.

Table I. Configurations of the algorithms
TLBO

Population Size 50

Teaching Factor [random*2]

PSO

Population Size 50

Personal Best Movement rate 15%

Global Best Movement rate 40%

ICA

Population Size 50

Empire Population 5

Colonies to Empire Movement rate 20%

Firefly

Population Size 50

B0 (base attraction) 50%

Y 1

5.2. Performance Results

The proposed methods are compared with the

standard GA and Monotonic GA based on different

performance metrics to show their capabilities precisely.

The standard GA and Monotonic GA are built-in

methods of EvoSuite.

The performance of the PSO for test data generation

in terms of four metrics has been studied by the authors

in [13]. In this work, twenty classes have been selected

randomly for comparison. The results have been reported

for each class separately. Also, the results obtained by

PSO have been compared by Standard GA and

Monotonic GA. The results showed that the examined

methods have different performances in some of the

selected classes.

Besides the PSO method, the authors have designed

another method based on TLBO for test data generation

in EvoSuite [29]. In this work, the experiments have been

extended to 50 classes and the methods have been

compared in terms of four metrics. Similar to [13], the

results have been presented in detail. We have seen the

same behaviour from the test data generation methods in

[13] and [14]. Here, the number of classes under test is

extended to show the performance of the methods in a

more accurate way. In addition, more performance

metrics are considered. In this work, we assume that all

the metrics have the same importance for a test designer.

However, it may be possible for one to prioritize the

coverage metrics.

The first metric is the line coverage. This metric has

been widely used for evaluating the performance of the

TSG methods. Line coverage shows the percentage of

lines of codes (statements) that have been run by the test

cases. The details of this metric and the others have been

presented in [5]. The results of the proposed swarm-

based methods against each other and GA based methods

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

191

are presented in Table II. The Monotonic GA and

Standard GA. obtain the best result for this metric.

Branch coverage is the second criterion used for

comparison. This metric shows the percentage of

decision points their true/false branches have evaluated

by test cases. As shown in Table II, the standard GA

method outperforms the others.

The exception coverage is another metric selected for

comparison. This criterion is considered as the

percentage of exceptions in the code that have been

covered by the test cases. Monotonic GA and ICA obtain

the best results. The standard GA and Firefly have the

same performance.

The fourth criterion is mutation coverage. The best

results are obtained by the GA-based methods. The

swarm-based methods obtain nearly the same results.

The fifth metric is the output coverage. Standard GA

and ICA obtain the best results for output coverage. The

PSO and Firefly placed at the last ranks.

Method coverage is the sixth metric, which is used for

comparison. Method coverage shows the percentage of

methods that have been called by test cases. The ICA

method shows superiority in terms of this metric. The

PSO and TLBO obtain the second and third ranks

respectively.

The no-exception coverage is another coverage

criterion that is used here for comparison. The standard

GA is placed at the first rank for no exception coverage

while the second rank is obtained by PSO method. TLBO

and Monotonic GA have competitive performance.

The last criterion used for comparison is the c-branch.

Like the other metrics, the best results for c-branch

obtained by the GA based methods. Next, the best result

is obtained by ICA.

Table II. Comparison of the methods based on coverage criteria

 Method

 Standard GA Monotonic GA Firefly PSO ICA TLBO

C
o

v
erag

e C
riteria

Line 57.80 57.94 54.44 54.25 55.57 55.43

Branch 60.34 60.14 56.37 56.09 57.53 57.27

Exception 97.99 98.63 97.99 97.69 98.59 97.86

Mutation 62.55 61.83 60.10 60.38 60.91 60.56

Output 54.91 53.86 52.12 51.41 53.87 53.03

Method 84.90 84.40 85.26 86.80 87.18 86.24

Exception 83.30 82.42 81.96 82.63 82.18 82.47

C-branch 58.81 59.25 55.94 54.84 56.52 56.04

Average 70.07 69.81 68.02 68.01 69.04 68.61

5.3. Overall performance

The lexicographic ordering method is used here to

study the overall performance of the methods. In this

method, the ranks of a method in each of the experiments

are summed. Number 1 shows the first rank, the second

rank is considered as 2, etc. The method with the lowest

value is considered as the best method. The average score

is the mean of ranks for the corresponding methods. The

results of the lexicographic ordering are shown in Table

III. From the table, standard GA and monotonic GA are

at the first and second rank respectively. While ICA

ranked third, the ranking for other swarm-based methods

is as follows.

Table III. The results of the lexicographic ordering.

#Rank Average Score Algorithm

1 2.0 Standard GA

2 2.375 Monotonic GA

3 2.75 ICA

4 3.875 TLBO

5 4.75 PSO

6 4.875 Firefly

The average of the coverage based on all metrics is

shown in Table IV. As can be seen from the table, the

same result as the lexicographic ordering is obtained for

the best algorithm (i. e. Standard GA). But, the worst

algorithm based on average performance is PSO.

However, the difference between the best and worst

methods is about 2.06%.

Table IV. The average coverage based on all metrics.

Algorithm Average Coverage

Standard GA 70.07%

Monotonic GA 69.81%

ICA 69.04%

TLBO 68.61%

PSO 68.01%

Firefly 68.02%

This means that swarm intelligence based methods

have the potential to produce better performance in

further studies by considering more efficient position

updating methods, neighbourhood topologies, flying

patterns, and many other contributions which have been

presented in the literature.

6. Conclusions

Test data generation as one of the important and

challenging tasks in the development of high-quality

software was considered in this work. The EvoSuite test

data generation suite was selected for the development

and performance study of the proposed method.

Previously, the EvoSuite team has developed some

methods for test data generation based on the genetic

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

192

algorithm. These methods have shown good

performances.

Previous studies on the swarm-intelligence-based

showed that this class of optimization methods could

efficiently solve many engineering methods. Also, these

methods have shown competitive performance in

comparison with evolutionary methods such as GA in

other engineering fields. Based on these facts, this work

was aimed to design a new class of optimization methods

in EvoSuite. In addition, the performances of these

methods were studied in comparison with GA methods.

Due to the discreteness of the test data generation

problem, the GA based method could be efficiently

adopted. However, most of the swarm intelligence based

methods such as ICA, PSO, TLBO, and Firefly have been

designed for continuous problems. Hence, these methods

need to modify using proper methods to work in discrete

search spaces. Also, it is possible to map a discrete

problem into the continuous one and apply the swarm

intelligence-based methods.

The applicability of the swarm-based methods was

studied for test data generation as a discrete problem. The

results showed that these methods were efficient to solve

the problem at the hand. Although, the best results in

most cases are obtained by the GA methods, the swarm-

based methods show competitive results. Also, in some

cases, the swarm-based methods provided better

performances. We hope that by incorporating more

efficient modifications in the swarm-based methods

better performances could be achieved. Modifications in

solution representation, movement patterns,

social/psychological, neighbour selection are

recommended. Also, it may be useful to use the potentials

of other test data generation methods and incorporate

them into the swarm-based methods.

7. References

دنباله آزمون دیجهت تول نینو یسجاد. راهکار ،یاریاسفند ،دیوح ،رافع[1]

با ترک ندیدر فرآ نهیکم پ یجستتتتجو یها تمیالگور بیآزمون نرم افزار ه ت

شگاه تبر یخفاش. مجله مهندس یو جستجو ینورد -25(, 3)46, زیبرق دان

35 ،2016.

ر ب یمورد آزمون مبتن دیاکرم. تول ،یکلائ ،دیوح ،رافع ،یعراق یعستتتگر[2]

ص ستفاده از الگور لیتبد فاتیمدل از تو ستجو تمیگراف با ا جله پرتو. م یج

 .2019 ،356-343(, 1)49, زیبرق دانشگاه تبر یمهندس

[3] M. Khari, P. Kumar, "An extensive evaluation of

search-based software testing: a review", Soft

Computing, Vol. 23, no. 6, pp.1933-1946, 2019.

[4] A. Aleti, I. Moser, L. Grunske, "Analysing the fitness

landscape of search-based software testing problems",

Automated Software Engineering, Vol. 24, no. 3, pp. 603-

621, 2017.

[5] G. Fraser, A. Arcuri, “EvoSuite : Automatic Test

Suite Generation for Object-Oriented Software,” 19th

ACM SIGSOFT Symposium and 13th European

Conference on Found. Software Engineering, 2011, pp.

416–419.

[6] P. McMinn, “Search-Based Software Testing: Past,

Present and Future,” in 2011 IEEE Fourth International

Conference on Software Testing, Verification and

Validation Workshops, 2011, pp. 153–163.

[7] D. Bruce, D. Menéndez, H. D. Clark, D. Dorylus, "An

ant colony based tool for automated test case generation",

In International Symposium on Search Based Software

Engineering, August 2019, Springer, Cham, pp. 171-180.

[8] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, A.

Arcuri, "Combining multiple coverage criteria in search-

based unit test generation", In International Symposium

on Search Based Software Engineering, September

2015, Springer, Cham, pp. 93-108.

[9] D. Bruce, H. D. Menéndez, E. T. Barr, D. Clark, "Ant

Colony Optimization for Object-Oriented Unit Test

Generation", In International Conference on Swarm

Intelligence, Springer, Cham, October 2020, pp. 29-41.

[10] N. Jatana, B. Suri, "An improved crow search

algorithm for test data generation using search-based

mutation testing", Neural Processing Letters, Vol. 52,

no. 1, pp. 767-784, 2020.

[11] J. Campos, Y. Ge, G. Fraser, M. Eler, A. Arcuri, "An

empirical evaluation of evolutionary algorithms for test

suite generation", In International Symposium on Search

Based Software Engineering, Springer, Cham,

September 2017, pp. 33-48.

[12] J. M. Rojas, M. Vivanti, A. Arcuri, G. Fraser, "A

detailed investigation of the effectiveness of whole test

suite generation", Empirical Software Engineering, Vol.

22, no. 2, pp. 852-893, 2017.

[13] M. Mehdi, D. Shahabi, S. P. Badiei, S. E.

Beheshtian, R. Akbari, and S. M. Reza, “On the

Performance of EvoPSO : a PSO Based Algorithm for

Test Data Generation in EvoSuite", In 2nd Conference on

Swarm Intelligence and Evolutionary Computation

(CSIEC), Kerman, Iran, 2017, pp. 129–134.

[14] M. M. D. Shahabi, S. P. Badiei, S. E. Beheshtian, R.

Akbari, S. M. R. Moosavi, "EVOTLBO: A TLBO based

Method for Automatic Test Data Generation in

EvoSuite", International Journal of Advanced Computer

Science and Applications, Vol. 8, no. 6, 2017.

[15] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, J.

Benefelds, "An industrial evaluation of unit test

generation: Finding real faults in a financial application",

In 2017 IEEE/ACM 39th International Conference on

Software Engineering: Software Engineering in Practice

Track (ICSE-SEIP), May 2017, pp. 263-272.

[16] S. Shamshiri, J. M. Rojas, L. Gazzola, G. Fraser, P.

McMinn, L. Mariani, A. Arcuri, "Random or

evolutionary search for object‐oriented test suite

generation", Software Testing, Verification and

Reliability, Vol. 28, no. 4, e1660, 2018.

[17] C. Oliveira, A. Aleti, L. Grunske, K. Smith-Miles,

"Mapping the effectiveness of automated test suite

generation techniques", IEEE Transactions on

Reliability, Vol. 67, no. 3, pp. 771-785, 2018.

[18] N. M. Albunian, "M. Diversity in search-based unit

test suite generation", In International Symposium on

Search Based Software Engineering, Springer, Cham,

September 2017, pp. 183-189.

[19] G. Gay, "Generating effective test suites by

combining coverage criteria", In International

Symposium on Search Based Software Engineering,

Springer, Cham, September 2017, pp. 65-82.

[20] M. Olsthoorn, P. Derakhshanfar, X. Devroey,"An

Application of Model Seeding to Search-Based Unit Test

Generation for Gson", In International Symposium on

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021 Serial no. 96

193

Search Based Software Engineering, Springer, Cham,

October 2020, pp. 239-245.

[21] D. Serra, G. Grano, F. Palomba, F. Ferrucci, H. C.

Gall, A. Bacchelli, "On the effectiveness of manual and

automatic unit test generation: ten years later", In 2019

IEEE/ACM 16th International Conference on Mining

Software Repositories (MSR), May 2019, pp. 121-125.

[22] G. Rudžionienė, Š. Packevičius, E. Bareiša,

"Directed multi-target search based unit tests

generation", In International Conference on Information

and Software Technologies, Springer, Cham, October

2019, pp. 90-109.

[23] H. Almulla, G. Gay, "Generating Diverse Test

Suites for Gson Through Adaptive Fitness Function

Selection", In International Symposium on Search Based

Software Engineering, Springer, Cham, October 2020,

pp. 246-252.

[24] B. Evers, P. Derakhshanfar, X. Devroey, A.

Zaidman, "Commonality-Driven Unit Test Generation"

In International Symposium on Search Based Software

Engineering", Springer, Cham, October 2020, pp. 121-

136.

[25] G. Fraser, A. Arcuri, "Evosuite: On the challenges

of test case generation in the real world", In 2013 IEEE

Sixth International Conference on Software Testing,

Verification and Validation, March 2013, pp. 362-369.

[26] G. Fraser, A. Arcuri, and P. McMinn, “Test Suite

Generation with Memetic Algorithms,” Gecco’13

Proceeding of Genetic and Evolutionary Computation

Conference, 2013, pp. 1437–1444.

[27] R. V. Rao, V. J. Savsani, D. P. Vakharia, “Teaching–

learning-based optimization: A novel method for

constrained mechanical design optimization problems”,

Comput. Des., Vol. 43, no. 3, pp. 303–315, 2011.

[28] R. Eberhart, J. Kennedy, “A New Optimizer Using

Particle Swarm Theory,” pp. 39–43, 1995.

[29] D. YueMing, W. YiTing, and W. DingHui, “Particle

swarm optimization algorithm for test case automatic

generation based on clustering thought,” In 2015 IEEE

International Conference on Cyber Technology in

Automation, Control, and Intelligent Systems (CYBER),

pp. 1479–1485.

[30] E. Atashpaz-Gargari, C. Lucas, “Imperialist

competitive algorithm: An algorithm for optimization

inspired by imperialistic competition”, 2007 IEEE

Congress on Evolutionary Computation, CEC 2007, pp.

4661–4667.

[31] I. Fister, I. Fister Jr, X. S. Yang, J. Brest, "A

comprehensive review of firefly algorithms", Swarm and

Evolutionary Computation, 2013, pp. 34-46.

