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Abstract To achieve high-quality software, different tasks such as testing should be performed. Testing is known as a 

complex and time-consuming task. Efficient test suite generation (TSG) methods are required to suggest the best data for 

test designers to obtain better coverage in terms of testing criteria. In recent years, researchers to generate test data in 

time-efficient ways have presented different types of methods. Evolutionary and swarm-based methods are among them. 

This work is aimed to study the applicability of swarm-based methods for efficient test data generation in EvoSuite. The 

Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Teaching Learning Based Optimization (TLBO), and 

Imperialist Competitive Algorithm (ICA) are used here. These methods are added to the EvoSuite. The methods are 

adapted to work in a discrete search space of test data generation problem. Also, a movement pattern is presented for 

generating new solutions. The performances of the presented methods are compared over 103 java classes with two built-

in genetic-based methods in EvoSuite. The results show that swarm-based methods are successful in solving this problem 

and competitive results are obtained in comparison with the evolutionary methods.  
 

Keywords: Test data generation, Firefly Algorithm, Particle Swarm Optimization, Teaching Learning Based 

Optimization, Imperialist Competitive Algorithm, EvoSuite 

 

 

1. Introduction 

Software plays an important role in every aspect of 

our life. Any malfunction or lack of precision in software 

can directly affect our lives and result in financial loss or 

even death in some cases. To prevent any potential 

damage, software needs to be tested before released. 

Software testing is expensive and can cost up to 50% of 

the software’s development cost. As testing and quality 

assurance is a vital process for software, it cannot be 

overlooked, so we need ways to reduce the cost of it and 

yet improve the precision [1], [2]. Automated methods 

have been used to enhance this process. Automated 

methods, such as search-based software testing (SBST) 

have been greatly noticed in recent years [3]. The search-

based methods formulate the test problem into a search 

problem and search the problem space to find the proper 

data to carry out the tests [4].  

The importance of testing encouraged researchers to 

develop different types of methods and suits such as 

EvoSuite [5] to cope with its difficulties. The objective 

of test data generation is to have a test suite that 

maximizes coverage criteria [6]. Finding the input test 

data that best serves our purpose of testing a software’s 

behaviour is a challenging task. Search-based methods 

are promising methods in test data generation. Search 

based methods solve an optimization problem using 

search algorithms to generate test cases and proper input 

data for them [6].  

In this paper, four modified swarm intelligence 

algorithms (i.e. TLBO, PSO, Firefly, ICA) are used for 

automatic test suite generation. Previous studies showed 

that swarm intelligence methods have good performance 

in solving hard engineering problems. It seems that the 

swarm-based methods have the ability to show good 

performance for test suite generation in comparison to 

evolutionary methods such as GA. The idea of this work 

is to study the capabilities of swarm-based algorithms to 

search in discrete search spaces of TSG problem. The 
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proposed methods are implemented in EvoSuite [5]. We 

select the EvoSuite because this tool showed better 

performance at most of the benchmarks in comparison 

with the other TSG tools.  

The results obtained by the proposed methods are 

compared with the results of two built-in genetic 

algorithms (i.e. MonotonicGA, and StandardGA) in 

EvoSuite. The results show that the swarm-based 

methods have competitive performance in comparison 

with the genetic-based methods. The dataset used here is 

SF110 from SourceForge and eight coverage criteria are 

considered.  

The main contributions of this work are: 

- Adapting swarm-based method to search in a 

discrete search space of TSG problem in 

EvoSuite. 

- Studying the behaviour of these algorithms for 

test data generation 

- Presenting a new way to update solutions that are 

generated by individuals in a swarm. 

The remaining of the paper is organized as follows: 

Related work is presented in the next section. Section 3 

presents the swarm intelligence based methods for 

generating test data. The performances of the proposed 

methods in test data generation are reported in Section 4. 

Finally, Section 5 concludes this work and suggests some 

proposals as future works. 

 

2. Related Work 

Automatic test data generation methods can be 

categorized into three types: random methods, dynamic 

symbolic execution, and search-based methods. In this 

work, we focus on search-based methods. In recent years, 

different types of search-based methods have been 

presented for test data generation in literature. Search 

based methods use search algorithms for generating test 

data. Most of the works in this field are based on GA and 

its variants. However, some works employ swarm-based 

methods for test suite generation. It seems that GA is a 

good choice because it has shown good performance in 

finding optimum solutions in discrete search spaces. 

Bruce et al. presented a tool called Dorylus for TSG 

[7]. Dorylus uses Ant Colony Optimization (ACO) 

algorithm. They focused on branch distance and 

Levenshtein distance as the fitness function and 

compared their method with the implemented methods in 

EvoSuite. The results showed Dorylus obtains better 

coverage in comparison with the built-in methods in 

Evosuite. 

Rojas et al. extended EvoSuite to enable them to 

combine multiple criteria [8]. They stated that generating 

test cases for a single criterion may not be a good 

indicator for evaluating an algorithm. Therefore, they 

combined nine criteria and studied the performance of 

EvoSuite under this combination. The results showed that 

although combining the criteria decreases the constituent 

coverage criteria slightly, but a significant growth up is 

seen in the test suite. 
Bruce et al. have presented a Tiered Ant Colony 

Optimization (TACO) for generating unit tests [9]. The 

proposed method has three tiers where the first and 

second tiers are used for goal prioritization, and test 

program synthesis respectively. The third tier generates 

the test data for the program. They compared TACO with 

the Randoop and EvoSuite tools. The experimental 

results showed that EvoSuite has better performance than 

TACO and Randoop.  

Jatana and Suri presented an Improved Crow Search 

Algorithm (ICSA) for TSG [10]. The ICSA improved the 

search capability of the CSA by utilizing Cauchy random 

numbers. They compared the proposed method with 

some meta-heuristics. The results showed that the ICSA 

generates a better test suite in comparison with the other 

methods. 

The performance of the Evolutionary Algorithms (EA) 

for test suite generation has been studied by Campos et 

al. in [11]. The authors stated that GA is the first choice 

in the software engineering domain. Hence, they focused 

on EA for test suite generation. They evaluated six 

versions of EA. The results showed that using a test 

archive helps the algorithms to obtain better coverage in 

comparison with the random test. 

Rojas et al. presented a whole test suite approach that 

has been used in EvoSuite [12]. This method tries to 

generate test suites as a whole and optimize them along 

with iterations rather than the traditional method that 

would target coverage goals individually by generating 

separate test cases for them. This method proves to work 

much better, achieving up to 18 times the coverage than 

the traditional way. In addition to higher coverage, this 

approach also generates smaller test suites due to a 

reduction in search redundancy and overlapping in goal 

coverage of the test cases.  

Shahabi et al. extended the EvoSuite by 

implementing Particle Swarm Optimization (PSO) and 

Teaching Learning Based Optimization (TLBO) [13], 

[14]. They studied the performance of these swarm-based 

methods for TSG in comparison with the GA-based 

methods of EvoSuite. Their study showed that these 

swarm-based methods generate competitive results in 

comparison with the GA methods. However, the GA 

methods surpass PSO and TLBO in most of the coverage 

criteria.  

The applicability of unit test generation tools on 

industrial projects has been studied by Almasi et al. [15]. 

They studied the performance of EvoSuite and Randoop 

for finding faults in life insurance software. The results 

showed that Evosuite has better performance than 

Randoop. 

Shamshiri et al. studied the behaviour of evolutionary 

search against the random search for TSG in object-

oriented software [16]. They applied EvoSuite for unit 

test generation over 1000 classes randomly selected from 

SF100 projects. Their study showed that although 

evolutionary searches are better for covering complex 

branches, the random search may be enough for 

obtaining a good coverage level in most of the classes.  

Oliveira et al. studied the effect of features of object-

oriented classes on the effectiveness of the automated 

TSG tools [17]. They found that some object-oriented 

metrics such as coupling and number of methods make 

software to be hard to test by different techniques. 

The performance of search-based unit test generation 

methods may depend on their ability in controlling 

diversity when exploring the search space. Albunian 

studied the effect of population diversity in unit test 
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generation [18]. For this purpose, he examined different 

ways of diversity control in GA. His study showed that 

increasing the population diversity increases the length of 

the individual rather than improving the coverage. 

In another study, Gay showed that combining 

coverage criteria helps the search-based test suite 

generation methods to generate test suites that are more 

effective for detecting faults in the CUTs [19]. He 

mentioned that search-based methods show good 

performance on the coverage criteria. But, they are 

ineffective in finding faults.  

As another work for empowering the search-based 

test generation methods, Olsthoorn et al. used model 

seeding to add some information to the methods [20]. 

They used the proposed method for test generation on the 

Gson using EvoSuite. 

In automating TSG, usually testing tools are used to 

save time and decrease the cost of testing. In recent years, 

some testing tools have been developed for this purpose. 

The effectiveness of automated testing tools such as 

EvoSuite against manual testing has been studied by 

Serra et al. [21]. They compared manual testing against 

EvoSuite, Randoop, and JTExpert in terms of mutation 

score, code coverage, and fault detection. The 

experiments showed that automatic test generation tools 

improve code coverage and mutation score in 

comparison with manual testing. However, improvement 

in fault detection is not significant. 

Rudžionienė et al. presented a method that uses 

multiple search targets for test generation [22]. They 

presented their method as a tool and compared it with the 

other test generation tools that use search-based methods. 

Almulla and Gay studied the effect of Adaptive 

Fitness Function Selection (AFSS) on the diversity of the 

generated test suites [23]. They found that using AFFS 

helps the automated TSG tools to generate more diverse 

test suites in comparison with the test suites that are 

generated using static fitness functions.  

Using the information in the source code can help 

search-based test suite generation methods to produce 

better test cases [24]. As an example, Evers et al. used the 

commonality score to measure the distance between the 

execution path of a test case and the common/uncommon 

execution pattern observed during the execution of the 

software. Using commonality as an objective in EvoSuite, 

they found that the generated test cases have better 

commonality score. 

 

3. Problem formulation 

The problem considered in this work is known as test 

data generation where the objective is to generate a test 

suite to optimize some criteria. A test suite is a set of test 

cases. The test cases are used by software testers to test 

the class under test (CUT). Each test case is composed of 

different parts. The main parts are inputs, the sequence of 

statements, and execution conditions.  

When we solve test data generation using swarm-

based methods, we should model it as a search problem. 

For this purpose, an objective or fitness function should 

be defined. By defining the fitness function, a swarm-

based method tries to optimize the fitness function by 

searching the search space and finding the optimal 

position in this space. Generally, the search problem is 

modeled as: 

max  𝑓𝑡𝑒𝑠𝑡_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑆𝑢𝑖𝑡𝑒) (1) 

In this model, 𝑡𝑒𝑠𝑡_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 is the coverage criteria 

that should be maximized. Hence, each algorithm tries to 

find a test suite that optimizes the selected criterion. 

Many criteria in software testing can be used as a fitness 

function. Here, we use eight criteria to assess the 

performance of the proposed algorithms: 1) line coverage, 

2) branch coverage, 3) exception coverage, 4) weak 

mutation coverage, 5) output coverage, 6) method 

coverage, 7) method no-exception coverage, and 8) c-

branch coverage.  
 

4. The Proposed Methods 

In recent years, researchers have proposed a large 

class of swarm-based optimization algorithms. These 

methods have shown satisfactory results in solving 

engineering problems. Usually, these methods have been 

used when computation time is important. These methods 

have the ability to provide near-optimal (in some cases 

even optimal) solutions in an acceptable time. Based on 

this fact, in this work, several swarm intelligence 

algorithms are adopted and implemented into the 

EvoSuite and their performances are evaluated. These 

methods are selected as representatives of swarm-based 

optimization techniques. We have tried to select methods 

with different optimization behaviours. The selected 

methods are different in terms of movement patterns, 

social/psychological impacts, neighbourhood, leader 

selection, and other important factors in optimization 

methods. These methods are based on: 

1) Particle Swarm Optimization (PSO), 

2) Teaching Learning Based Optimization (TLBO), 

3) Firefly Algorithm (FA), 

4) Imperialist Competitive Algorithm (ICA). 

All the algorithms in their standard forms have been 

designed for optimizing continuous problems. Also, a 

strategy is proposed for the movement operator which 

makes it applicable to a discrete search space of the test 

data generation problem. 

The overall structure of the proposed methods is 

presented in Fig. 1. Each method starts by initializing the 

swarm using the built-in module of EvoSuite. To use a 

certain algorithm for the optimization, an initial 

population is randomly generated using the provided 

methods in EvoSuite [25], [26]. This phase is similar in 

all the proposed algorithms. After that, the update phase 

(the main module) of the proposed method starts. For this 

module, four suggested algorithms (i.e. TLBO, PSO, 

Firefly, and ICA) are used separately.  
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Fig. 1. The overall structure of the proposed methods. 

The method updates the solutions cycle by cycle until 

the termination condition is met. To update the current 

solution, an optimization algorithm needs to compute the 

quality of its individuals based on a fitness function. The 

EvoSuite based on the selected metric calculates the 

fitness of an individual in the swarm. More precisely, the 

built-in metrics of EvoSuite such as code coverage is 

used as the fitness function. After termination, the best 

result is reported by the algorithm. The details of the 

swarm-based methods are described in the following sub-

sections. However, we need to represent the movement 

operator and solution representation before the 

description of the proposed methods. 

It should be noted that EvoSuite has many classes and 

has its complexities. However, for the sake of simplicity, 

the functionalities of EvoSuite which are directly used by 

the proposed method are shown by dummy names in the 

following figure. It is assumed that Init module initializes 

the individual, Metric module computes the fitness of 

individuals, and Mutation module is used to mutate 

individuals. 

 

4.1. Discrete and Continues Space Operators 

In every evolutionary algorithm, the evolutionary 

mechanism is done by several operators. The two 

mechanisms responsible for altering the individuals are 

called crossover and mutation. In discrete search spaces 

like what a classic genetic algorithm works in, 

individuals get crossed over with each other to generate 

offspring. Moreover, usually, a part of the population is 

mutated as well. On contrary, for algorithms in the swarm 

intelligence paradigm that works in continuous search 

spaces, the new generation is not born in every iteration 

but it is the same population that gains more experience 

in every iteration. This experience is improved by 

moving the individuals in the search space according to a 

movement strategy to find the best area (i.e. a point with 

the best fitness value) in the search space. The movement 

strategies are usually designed to work with continuous 

decision variables. 

Most of the swarm intelligence based methods in their 

basic form have been proposed to work in continuous 

search spaces. The test data generation problem has a 

discrete search space. Hence, we need to adopt the 

proposed methods in such a way to work with this 

discrete problem. For this purpose, in this paper, a 

movement strategy is proposed that enables the swarm 

intelligence algorithms, which in nature are of continuous 

type, to work in discrete search spaces. As in the classic 

swarm intelligence algorithm, this strategy is based on 

the main factor of the swarm intelligence paradigm which 

is the communication between individuals telling each 

other the best point they have found so far. The details of 

the movement strategy are given in Section 4.3. 

 

4.2. Solution Representation  

Solution representation plays an important role in the 

success of an optimization method. Hence, we need to 

pay more attention to this. The representation proposed 

by the EvoSuite designers has a good structure that 

appropriately shows the test suits and test cases. Hence, 

in this work, the authors prefer to use the representation 

which is the same as what has been used in the EvoSuite 

tool [25]. This representation has been basically proposed 

for GA-based methods. In the genetic coding model that 

has been used in these algorithms, every member is 

represented as a chromosome, and the attributes of each 

individual are determined by its genes. In terms of test 

data generation, test cases and test suites are both 

represented as chromosomes. At the test suite level, a 

chromosome’s genes are corresponding to test cases. At 

the test case level, genes are statements in a test case. 

Statements are of various types: Method calls, primitive 

statements (variable declaration), constructor statements 

(that create classes), field statements (accessing public 

members of a class), and assignment statements. 

 

4.3. Proposed Movement Operator 

The operator requires two inputs, a source individual 

and a destination. A movement rate is also used in the 

movement that is set as the algorithm’s parameter in the 

configurations. The operator makes a list of each 

individual’s attributes (i.e. test cases or statements) and 

determines attributes exclusive to the destination. As this 

movement works on both test suite and test case levels; 

on the test suite level, to determine candidates, test cases 

are prioritized based on their coverage. Test cases with 

exclusive goal coverage have higher priority. However, 

on the test case level, there is no specific prioritization 

for the statements except their exclusive existence in the 

destination test case. Then according to the provided rate, 

a number of the attributes are added to the source from 

the destination. This process leaves the destination as it 

is and only changes the source by adding it to its list. It 

should be noted that as this movement operator works in 

discrete spaces, the movement is not in vector form 

unlike the classical algorithms of the swarm intelligence 

paradigm. 

 

4.4. TLBO Algorithm 

TLBO is the first swarm intelligence technique that is 

used in the update module of the proposed method given 

in Fig. 1. TLBO [27] is a successful algorithm in solving 

NP-Hard problems which has been proposed by Rao. The 

proposed TLBO method uses the representation given in 

Section 4.2 and updates solutions by incorporating 
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Report Best Solution 

Terminate? 

Evaluate Solutions 

Update Solutions 

EvoSuite 

Init Module 

Metric Module 

Mutation Module 

T
L

B
O

 

P
S

O
 

F
irefly 

IC
A
 

Other Modules… 



Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021                                                                                                Serial no. 96 

187 

 

movement operators into the update phases of the classic 

TLBO algorithm.  

In general, this algorithm simulates the teaching and 

learning mechanisms in a class. In other words, a social 

and psychological phenomenon in a class between 

teacher and students is considered. The swarm (or 

population) in this algorithm consists of students and a 

teacher which is the best student in every iteration. 

Students both learn from their teacher and tutor each 

other. A student with a higher score has a higher coverage 

percentage in terms of software testing. The procedure of 

the proposed TLBO algorithm, which is based on classic 

TLBO, with the proposed movement operator, is 

described in Fig. 2. Apart from the initialization phase, 

the main body of the TLBO has two phases that are 

known as teaching and learning. 

A) Initialization: The main task in the initialization 

phase is assigning the first values for the individuals of 

the swarm. This could be done randomly. The proposed 

algorithm receives a randomly generated population as 

input. For this purpose, the random method of EvoSuite 

is used. Each student of the class (i.e. population) 

represents a test case or a test suite depending on the level 

of optimization the algorithm is working at. Besides 

defining the first values of individuals, the parameters of 

the algorithm such as termination condition should be set 

at this phase. 

 
_____________________________________________ 

Initialize the position of individuals using Evosuite Init 

module 

                Set number of students, termination condition 

While (termination condition not met) 

Calculate the mean of decision variables 

Identify the best solution as the teacher 

Identify the movement percentage based on the 

average and a random number 

Modify solution based on the best solution 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − (𝑇𝐹)𝑀𝑒𝑎𝑛)  

If the new solution better than existing 

Accept the solution 

Mutate the solution 

Else 

Reject the solution 

End If 

Select two solutions randomly 𝑋𝑖 and 𝑋𝑗 

If 𝑋𝑖 better than 𝑋𝑗 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑖 − 𝑋𝑗) 

Else 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑗 − 𝑋𝑖) 

End If 

If the new solution better than existing 

Accept the solution 

Mutate the solution 

Else 

Reject the solution 

End If 

End While 

Return the best solution 
__________________________________________________ 

Fig. 2. Pseudocode of the proposed TLBO algorithm 

 

B) Teaching phase: By initializing, the TLBO updates 

individuals (here called students) through teaching and 

learning phases. The teaching and learning phases iterate 

cycle by cycle until the termination condition is met. At 

each cycle, all the students are evaluated using the Metric 

module of the EvoSuite, and the one with the highest 

score (i.e. coverage percentage) is chosen as the teacher. 

Then all the other students move toward the teacher to 

improve their fitness using the proposed movement 

pattern: 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − (𝑇𝐹)𝑀𝑒𝑎𝑛) (2)  

where, 𝑋𝑜𝑙𝑑  , 𝑋𝑛𝑒𝑤 are the current and next positions of a 

student respectively. 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟  is the position of the 

teacher, 𝑟 is a random parameter that brings stochasticity 

to the algorithm, and (𝑇𝐹)𝑀𝑒𝑎𝑛  shows the mean 

positions of the students. This means that all the students 

share their knowledge for updating positions with each 

other. The new solution is accepted and mutated if a 

better position in the search space has been achieved by 

the update formula. The solution is mutated by the 

Mutation module of EvoSuite. Otherwise, the new 

solution is discarded. This movement pattern models a 

greedy approach for updating positions. 

C) Learning phase: The update phase continues with 

the learning phase. In this phase students tutor each other, 

meaning that each student chooses a classmate randomly 

and compares its score with it. In case that the chosen 

classmate 𝑋𝑖  (by student 𝑋𝑗 ) has a higher score, the 

student moves toward it using: 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑖 − 𝑋𝑗) (3)  

Otherwise, the student moves away from the classmate 

using: 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑗 − 𝑋𝑖) (4)  

In the learning phase, the greedy approach is used to 

accept or reject the new solution. The solution is updated 

if it obtains better fitness. 

D) Stopping conditions: As this algorithm, works 

iteratively for its optimization purpose, certain conditions 

stop the algorithm. At the end of every iteration, the 

whole population is evaluated and if a student scores a 

certain coverage percentage (set as a parameter to the 

algorithm), the algorithm stops and returns that student 

as the best-found answer. In addition to that, a certain 

number of iterations or a limited time for running can also 

be set as stopping conditions. If none of the conditions 

are met, the algorithm continues from step B. 

 

4.5. PSO Algorithm 

As the second method to update solutions, PSO is 

used. It can be said that PSO is a classic and well-known 

swarm-based method that has been extensively used by 

researchers to solve engineering problems. PSO 0like 

every swarm intelligence algorithm uses two search 

mechanisms to balance exploration and exploitation. At 

first and in the initial iterations, PSO mostly explores the 

search space to cover more ground. Throughout the 

search with a decrease in exploration, PSO focuses on the 

superior areas found in the search space and exploits 

them [29].  
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PSO works according to the following strategy shown 

in Fig. 3. After initialization, the method improves 

solutions by two phases: 1) determining personal and 

global best positions, 2) updating positions. By 

terminating the algorithm, the best solution is reported as 

output.  

A) Initialization: The initial population is generated 

by randomly generating particles (i.e. test suites and test 

cases) and spreading them throughout the search space. 

Similar to other methods the provided random 

initialization method of EvoSuite is used for this purpose. 

After initialization, the personal best of each particle 

should be determined. These initial positions are 

considered as the particles’ personal best. Also, the gbest 

is selected as the best initial position. Like the TLBO, the 

input parameters are set at this phase. 

B) Determining personal and global best positions: 

After initialization, in this step, the fitness value for every 

particle is calculated and the particle with the best fitness 

value among the population is selected as the global best. 

The fitness value of the current position is compared to 

the best personal position’s fitness value. If the current 

position has a better fitness (i.e. higher coverage) it is set 

as the personal best position.  

C) Update (particle velocity and position): The first 

movement is a mutation done by the provided mutation 

method in EvoSuite which randomly adds or removes test 

cases in a test suite or statements in a test case. Particles 

have two consecutive movements. The first is toward the 

global best position based on the following formula 

which is adopted from the traditional PSO algorithm.  

𝑋𝑡+1 = 𝑋𝑡 + 𝑉𝑔𝑏 

𝑉𝑔𝑏 = 𝐶1(𝑋𝑔𝑏 − 𝑋𝑡) 

(5) 

(6) 

 

In the formula above, Xt is the current particle, Xgb is 

a copy of the global best particle and C1 is the gb 

movement rate set as a parameter to the algorithm. 

(𝑋𝑔𝑏 − 𝑋𝑡)  is attained by removing the mutual test cases 

from Xgb. C1 determines the percentage of the exclusive 

test cases of the global best particle to be copied to the 

current particle. In this way, the resulting particle after 

the movement is closer to the global best particle in terms 

of its attributes (i.e. statements or test cases).  

The second movement is done similarly except 

towards the personal best particle. 

𝑋𝑡+1 = 𝑋𝑡+1 + 𝑉𝑝𝑏 

𝑉𝑝𝑏 = 𝐶2(𝑋𝑝𝑏 − 𝑋𝑡+1) 

(7) 

(8) 

 

Xt+1 is the resulting particle from the previous movement, 

Xpb is the personal best particle and C2 is the pb 

movement rate set as a parameter to the algorithm.  

The age is updated according to the number of 

iteration. This procedure is repeated for every particle in 

the population. As mentioned before the movement 

operator is a discrete operator which means unlike the 

classical PSO [28], [29] that particles move in vector 

forms, here there is no summation on movements and 

both movements are done separately. 

 

_____________________________________________ 

Initialize the position of individuals using Evosuite Init 

module 

                Set number of students, termination condition  

While (termination condition not met) 

Identify the best solution as Global Best 

Identify the best position in each individual 

history as Personal Best 

Identify the movement percentage given as a 

parameter to the algorithm 

Modify solution based on Global and Personal 

Best 

𝑋𝑡+1 = 𝑋𝑡 + 𝑉𝑔𝑏 

𝑉𝑔𝑏 = 𝐶1(𝑋𝑔𝑏 − 𝑋𝑡)  

𝑋𝑡+1 = 𝑋𝑡+1 + 𝑉𝑝𝑏 

𝑉𝑝𝑏 = 𝐶2(𝑋𝑝𝑏 − 𝑋𝑡+1)  

If the new solution better than existing 

Accept the solution 

Mutate the solution 

Else 

Reject the solution 

End While 

Return the best solution 
__________________________________________________ 

Fig. 3. Pseudocode of the proposed PSO algorithm 
 

D) Stopping conditions: As this process can go on 

forever without finding the absolute best position in the 

search space, there are several stopping conditions in 

place. Run time, the number of iterations, and a certain 

fitness value threshold are used for this purpose. The 

algorithm checks the stopping conditions and if not met, 

continues from step B. After termination of the algorithm, 

the global best particle is given as the output. 

 

4.6. ICA Algorithm 

The ICA is the third method that is used to update 

solutions. This algorithm is based on the classic ICA [30] 

with the proposed movement operator. ICA works 

according to the following strategy shown in Fig. 4. The 

imperialist competitive algorithm is inspired by the 

imperialistic behaviour of some dominant countries in 

history. Imperialism is the act of expanding a country’s 

power beyond its borders. In this strategy, instead of 

directly ruling a country, the imperialist state controls it 

indirectly by some less obvious ways like controlling its 

market and economy. 

The algorithm uses elements to represent the political 

phenomenon described earlier. The individuals are 

countries, which can be of two types, imperialist, and 

colony. A group of countries together form an empire and 

all the empires together form the population. Empires are 

consisted of imperialist and other countries as its colonies. 

_____________________________________________ 

Initialize individuals using Evosuite Init module 

               Set number of countries, termination condition 

While (termination condition not met) 

Identify Empires based on their cost 

Identify distribute countries between empires 

Modify solution based on the emperor in each 

empire  

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟(𝑋𝑒𝑚𝑝𝑒𝑟𝑜𝑟 − 𝑋𝑜𝑙𝑑) 
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Mutate random solution known as revolution 

function 

Search to replace the emperor with a better 

country based on their costs in each empire 

Search for the weakest empire, remove one 

colony from it, and add it to another empire 

End While 

Return the best solution 
__________________________________________________ 

Fig. 4. Pseudocode of the proposed ICA algorithm 

Regarding the problem representation, test suites and 

test cases are both represented as countries. The fitness 

function is the coverage percentage in a specific coverage 

criterion. After initialization, the ICA method updates 

solution through five phases: 1) choosing imperialists 

and forming empires, 2) update (or assimilation), 3) 

revolution, 4) empire competition, and 5) inter empire 

competition. By terminating the method, the best solution 

is reported as the output. 

A) Initialization: Like other swarm-based algorithms, 

the initial swarm is a randomly generated population. 

This random method is the same as what is used in 

EvoSuite. Although, parameters of ICA are set at this 

phase. 

B) Choosing imperialists and forming empires: A part 

of countries (set as a parameter) with the best fitness 

value (i.e. highest coverage percentage) is selected as 

imperialists. The rest of the countries in the world 

(population) are divided into different groups called 

empires, each empire is assigned to an imperialist and 

forms the colonies for the corresponding imperialist. 

C) Update (assimilation): This phase optimizes the 

swarm using the proposed movement method. Colonies 

move toward their imperialist by receiving attributes 

from it.  

The proposed movement operator gets the source 

colony and the imperialist as its inputs. A movement rate 

is defined as a parameter for this algorithm that 

determines what portion of the imperialist’s attributes (i.e. 

test cases or statements) should be given to the colony to 

move the colony closer to the imperialist. 

D) Revolution: In this phase, a mutation is done on all 

the population. This mutation again is the built-in 

mutation operator of the EvoSuite.  

E) Intra empire competition: After the revolution, a 

colony might have reached a better point in the search 

space (a higher coverage percentage), in this case, the 

colony is selected as the new imperialist for that empire. 

F) Inter empire competition: In this step, the total 

power for every empire is calculated and the weakest 

colony of the weakest empire is removed and added to 

another empire which itself is chosen by the Boltzmann 

formula (unlike the classic ICA).  

𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑒𝑚𝑝𝑖𝑟𝑒

= 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝐼𝑀𝑃𝐸𝑅𝐼𝐴𝐿𝐼𝑆𝑇)

+  ∑ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒) 

𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝑣𝑎𝑙𝑒𝑚𝑝𝑖𝑟𝑒

=   
𝑒−𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑒𝑚𝑝𝑖𝑟𝑒 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚

∑ 𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑒𝑚𝑝𝑖𝑟𝑒

 

(9) 

 

 

 

(10) 

 

 

The total power calculation for an empire takes two 

parameters; the imperialist power which is its coverage 

percentage and the summation of the power of the 

colonies. To choose a host for the removed colony, 

Boltzmann value for every empire is calculated and the 

empire with the highest value takes the removed colony. 

After this step if an empire is left without any colonies, 

that empire is eliminated and the imperialist is added to 

another empire again chosen by the Boltzmann value.  

G) Stoppin-g conditions: If the algorithm runs for 

long enough, all the empires except the most powerful 

one collapse, and all the colonies are in the same empire 

with one imperialist. In this empire, all the colonies have 

the same fitness value as each other as well as the 

imperialist, in this case, the algorithm is stopped and the 

imperialist is given as the best-found answer. If otherwise, 

a certain stopping condition like running time, number of 

iterations, or a specific coverage percentage in a country 

will stop the algorithm and return the best (highest 

coverage percentage) country found, as the answer. If 

none of the stopping conditions are met, the algorithm 

continues from step C. 

 

4.7. Firefly Algorithm 

Firefly algorithm is another swarm intelligence 

paradigm algorithm that is inspired by the flashing 

behaviour of fireflies [31]. Firefly works according to the 

following strategy shown in Fig. 5. In nature, fireflies 

flash a chemically produced light to attract each other. In 

the firefly algorithm modeling, all fireflies are unisexual 

and any individual firefly can attract another one. The 

attraction between two fireflies is proportional to their 

brightness, the brighter one attracts the less bright firefly. 

In addition to the brightness, the distance between two 

fireflies has a negative correlation with the attraction 

between them. The last rule is that if there is a situation 

where there are no fireflies brighter than the given one, it 

will move toward another firefly randomly.  

Regarding problem representation, both test suites 

and test cases are regarded as fireflies. The cost function 

is represented as the brightness of a firefly, the brighter it 

is the more coverage it has.  

A) Initialization: The population with the given size 

as the algorithm’s parameter is generated randomly via 

the given random method in the EvoSuite. Also, the 

parameters of the algorithm are set based on the 

determined configuration. 

B) Update (movement): The proposed movement 

operator gets two fireflies as its inputs. Based on their 

brightness and distance the attractiveness between them 

is calculated to determine which one moves toward the 

other. 

B =  B0 . e-γ . r^2 ≈  
B0

1 +  γr2
 

(11)  

Y is a parameter set to the algorithm and the higher B is 

for a firefly the more attractive it looks to the other 

fireflies. rij is the distance representative between the two 

fireflies calculated by the formula below. 

𝑟𝑖𝑗 = (𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖 − 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑗)
2
 (12)  
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According to the movement rate that is defined as a 

parameter for this algorithm, a portion of the destination 

firefly’s attributes (i.e. test cases or statements) is given 

to the moving firefly. This comparison of attractiveness 

and movement is done for every pair of fireflies in the 

population. 

C) Stopping conditions: Like the other algorithms, 

there are certain rules to stop the iterative procedure of 

the algorithm.  

_____________________________________________

Initialize the individuals using Evosuite Init module 

                Set number of fireflies, termination condition 

While (termination condition not met) 

For all fireflies 

       For all other fireflies 

 If another firefly is better than this 

one  

  𝑩 = 𝑩𝟎 ∗ 𝒆−𝒓𝟐
 

𝑋𝑛𝑒𝑤𝑇ℎ𝑖𝑠 = 𝑋𝑜𝑙𝑑𝑇ℎ𝑖𝑠 +
𝑟𝐵(𝑋𝑜𝑡ℎ𝑒𝑟 − 𝑋𝑡ℎ𝑖𝑠)   

End While 

Return the best solution 
__________________________________________________ 

Fig. 5. Pseudocode of the proposed Firefly 

The time for running, certain coverage (brightness) in a 

firefly, or the number of iterations. If none of the 

conditions are met at this step, the algorithm continues 

from step B. 
 

5. Performance Study 

In this section, the applicability and performance of 

the proposed swarm intelligence based methods are 

presented. First, the setting of the experiments and 

configuration of the methods are presented, and then the 

experimental results are reported. Finally, the overall 

performance sub-section gives the obtained results 

generally. 
 

5.1. Experimental Setup 

The proposed methods have been integrated into 

EvoSuite as a platform to test their performance. In 

addition to the four algorithms introduced in this paper, 2 

algorithms of the genetic family (i.e. Standard GA and 

Monotonic GA) have also been studied and a comparison 

has been made among them. The proposed methods use 

built-in functionalities of EvoSuite for mutation, solution 

representation, objective function computation, and 

initialization of individuals. 

The data set used here is downloaded from 

SourceForge, an online code repository. 103 classes are 

randomly selected from the SF110 data set. The selected 

classes have been coded in Java. The selected classes 

have different features (e. g. number of methods, line of 

codes, number of branches, and number of exceptions). 

All the classes have been studied with all 6 algorithms. 

Each algorithm works in eight criteria on separate 

procedures. As there are about 5000 rows of outputs, the 

performance of each algorithm in each of the criteria has 

been summarized in the tables presented in this section. 

The results presented are attained with the following 

configurations for the algorithms are given in Table I. 

Some of the parameters are used in common and some of 

them are exclusive to an algorithm. The size of the swarm 

is set at 50, and methods terminate after a predefined 

number of iterations.  

Each algorithm has been evaluated 10 times and the 

average results are computed and presented in Section 

5.2. For a fair comparison, the total goals and achieved 

goals are used in the experiments. At each run, EvoSuite 

determines total goals and reports the number of goals 

achieved by an algorithm. The average performance is 

computed by dividing achieved goals by the total goals. 
 

 

Table I. Configurations of the algorithms 
TLBO 

Population Size 50 

Teaching Factor [random*2] 

PSO 

Population Size 50 

Personal Best Movement rate 15% 

Global Best Movement rate 40% 

ICA 

Population Size 50 

Empire Population  5 

Colonies to Empire Movement rate 20% 

Firefly 

Population Size 50 

B0 (base attraction)  50% 

Y 1 

 

5.2. Performance Results 

The proposed methods are compared with the 

standard GA and Monotonic GA based on different 

performance metrics to show their capabilities precisely. 

The standard GA and Monotonic GA are built-in 

methods of EvoSuite.  

The performance of the PSO for test data generation 

in terms of four metrics has been studied by the authors 

in [13]. In this work, twenty classes have been selected 

randomly for comparison. The results have been reported 

for each class separately. Also, the results obtained by 

PSO have been compared by Standard GA and 

Monotonic GA. The results showed that the examined 

methods have different performances in some of the 

selected classes. 

Besides the PSO method, the authors have designed 

another method based on TLBO for test data generation 

in EvoSuite [29]. In this work, the experiments have been 

extended to 50 classes and the methods have been 

compared in terms of four metrics. Similar to [13], the 

results have been presented in detail. We have seen the 

same behaviour from the test data generation methods in 

[13] and [14]. Here, the number of classes under test is 

extended to show the performance of the methods in a 

more accurate way. In addition, more performance 

metrics are considered. In this work, we assume that all 

the metrics have the same importance for a test designer. 

However, it may be possible for one to prioritize the 

coverage metrics. 

The first metric is the line coverage. This metric has 

been widely used for evaluating the performance of the 

TSG methods. Line coverage shows the percentage of 

lines of codes (statements) that have been run by the test 

cases. The details of this metric and the others have been 

presented in [5]. The results of the proposed swarm-

based methods against each other and GA based methods 
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are presented in Table II. The Monotonic GA and 

Standard GA. obtain the best result for this metric. 

Branch coverage is the second criterion used for 

comparison. This metric shows the percentage of 

decision points their true/false branches have evaluated 

by test cases. As shown in Table II, the standard GA 

method outperforms the others. 

The exception coverage is another metric selected for 

comparison. This criterion is considered as the 

percentage of exceptions in the code that have been 

covered by the test cases. Monotonic GA and ICA obtain 

the best results. The standard GA and Firefly have the 

same performance. 

The fourth criterion is mutation coverage. The best 

results are obtained by the GA-based methods. The 

swarm-based methods obtain nearly the same results. 

The fifth metric is the output coverage. Standard GA 

and ICA obtain the best results for output coverage. The 

PSO and Firefly placed at the last ranks. 

Method coverage is the sixth metric, which is used for 

comparison. Method coverage shows the percentage of 

methods that have been called by test cases. The ICA 

method shows superiority in terms of this metric. The 

PSO and TLBO obtain the second and third ranks 

respectively. 

The no-exception coverage is another coverage 

criterion that is used here for comparison. The standard 

GA is placed at the first rank for no exception coverage 

while the second rank is obtained by PSO method. TLBO 

and Monotonic GA have competitive performance. 

The last criterion used for comparison is the c-branch. 

Like the other metrics, the best results for c-branch 

obtained by the GA based methods. Next, the best result 

is obtained by ICA. 

 

 

Table II. Comparison of the methods based on coverage criteria 

  Method 

  Standard GA Monotonic GA Firefly PSO ICA TLBO 

C
o

v
erag

e C
riteria 

Line 57.80 57.94 54.44 54.25 55.57 55.43 

Branch 60.34 60.14 56.37 56.09 57.53 57.27 

Exception 97.99 98.63 97.99 97.69 98.59 97.86 

Mutation  62.55 61.83 60.10 60.38 60.91 60.56 

Output  54.91 53.86 52.12 51.41 53.87 53.03 

Method  84.90 84.40 85.26 86.80 87.18 86.24 

Exception  83.30 82.42 81.96 82.63 82.18 82.47 

C-branch  58.81 59.25 55.94 54.84 56.52 56.04 

Average  70.07 69.81 68.02 68.01 69.04 68.61 
 

 

5.3. Overall performance 

The lexicographic ordering method is used here to 

study the overall performance of the methods. In this 

method, the ranks of a method in each of the experiments 

are summed. Number 1 shows the first rank, the second 

rank is considered as 2, etc. The method with the lowest 

value is considered as the best method. The average score 

is the mean of ranks for the corresponding methods. The 

results of the lexicographic ordering are shown in Table 

III. From the table, standard GA and monotonic GA are 

at the first and second rank respectively. While ICA 

ranked third, the ranking for other swarm-based methods 

is as follows. 

 

Table III. The results of the lexicographic ordering. 

#Rank Average Score Algorithm 

1 2.0 Standard GA 

2 2.375 Monotonic GA 

3 2.75 ICA 

4 3.875 TLBO 

5 4.75 PSO 

6 4.875 Firefly 

 

The average of the coverage based on all metrics is 

shown in Table IV. As can be seen from the table, the 

same result as the lexicographic ordering is obtained for 

the best algorithm (i. e. Standard GA). But, the worst 

algorithm based on average performance is PSO. 

However, the difference between the best and worst 

methods is about 2.06%.  

 

Table IV. The average coverage based on all metrics. 

Algorithm Average Coverage 

Standard GA 70.07% 

Monotonic GA 69.81% 

ICA 69.04% 

TLBO 68.61% 

PSO 68.01% 

Firefly 68.02% 

 
This means that swarm intelligence based methods 

have the potential to produce better performance in 

further studies by considering more efficient position 

updating methods, neighbourhood topologies, flying 

patterns, and many other contributions which have been 

presented in the literature. 

 

6. Conclusions 

Test data generation as one of the important and 

challenging tasks in the development of high-quality 

software was considered in this work. The EvoSuite test 

data generation suite was selected for the development 

and performance study of the proposed method. 

Previously, the EvoSuite team has developed some 

methods for test data generation based on the genetic 
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algorithm. These methods have shown good 

performances.  

Previous studies on the swarm-intelligence-based 

showed that this class of optimization methods could 

efficiently solve many engineering methods. Also, these 

methods have shown competitive performance in 

comparison with evolutionary methods such as GA in 

other engineering fields. Based on these facts, this work 

was aimed to design a new class of optimization methods 

in EvoSuite. In addition, the performances of these 

methods were studied in comparison with GA methods. 

Due to the discreteness of the test data generation 

problem, the GA based method could be efficiently 

adopted. However, most of the swarm intelligence based 

methods such as ICA, PSO, TLBO, and Firefly have been 

designed for continuous problems. Hence, these methods 

need to modify using proper methods to work in discrete 

search spaces. Also, it is possible to map a discrete 

problem into the continuous one and apply the swarm 

intelligence-based methods.  

The applicability of the swarm-based methods was 

studied for test data generation as a discrete problem. The 

results showed that these methods were efficient to solve 

the problem at the hand. Although, the best results in 

most cases are obtained by the GA methods, the swarm-

based methods show competitive results. Also, in some 

cases, the swarm-based methods provided better 

performances. We hope that by incorporating more 

efficient modifications in the swarm-based methods 

better performances could be achieved. Modifications in 

solution representation, movement patterns, 

social/psychological, neighbour selection are 

recommended. Also, it may be useful to use the potentials 

of other test data generation methods and incorporate 

them into the swarm-based methods. 
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