- [1] S. Abbasbandy, The application of Homotopy Analysis Method to non-linear equations arising in heat transfer, Physics letters A, 360(1) (2006), 109–113. DOI: 10.1016/j.physleta.2006.07.065.
- [2] A. S. Bataineh, M. S. M. Noorani, and I. Hashim, Direct Solution of nth-order Initial value Problems by Homotopy Analysis Method, International Journal of Differential Equations, 2009 (2009), Article ID 842094, 15 Pages. DOI:10.1155/2009/842094.
- [3] A. S. Bataineh, M. S. M. Noorani, and I. Hashim, Solving system of ODEs by Homotopy Analysis Method, Communications in Non-linear Science and Numerical Simulation, 13(10) (2008), 2060–2070. DOI:10.1016/j.cnsns.2007.05.026.
- [4] S. Chakraverty, N. Mahato, P. Karunakar, and T. Dilleswar Rao, Advanced Numerical and Semi-Analytical Methods for Differential Equations, Wiley Telecom, 2019.
- [5] V. G. Gupta and Sumit Gupta, Application of Homotopy Analysis Method for Solving nonlinear Cauchy Problem, Surveys in Mathematics and its applications, 7 (2012), 105–116.
- [6] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
- [7] I. Hashim, O. Abdulaziz, and S. Momani, Homotopy Analysis method for fractional Initial Value Problems, Communications in Non-linear Science and Numerical Simulation, 14 (2009), 674–684. DOI:10.1016/j.cnsns.2007.09.014.
- [8] C. Hoede and Xueliang Li, Clique polynomials and independent set polynomials of graphs, Discrete Math. 125 (1994), 219–228. DOI: 10.1016/0012-365X(94)90163-5.
- [9] K. H. Hussain, New reliable modifications of the Homotopy methods, Indonesian Journal of Electrical Engineering and Computer Science, 19(1) (2020), 371–379. DOI: 10.11591/ijeecs.v19.i1.pp371-379.
- [10] S. Kumbinarasaiah, A new approach for the numerical solution for non-linear Klein–Gordon equation, SeMA, 77 (2020), 435-–456. DOI: 10.1007/s40324-020-00225-y.
- [11] S. Kumbinarasaiah, H. S. Ramane, K. Pise, and G. Hariharan, Numerical Solution for Nonlinear Klein Gordon Equation via Operational Matrix by Clique Polynomial of Complete Graphs, Int. J. Appl. Comput. Math, 7(12) (2021), 1–19. DOI: 10.1007/s40819-020-00943-x.
- [12] Y. Massoun and R. Benzine, The Homotopy Analysis Method for Fourth-Order Initial Value problems, Journal of Physical Mathematics, 9(1) (2018), 1–4. DOI: 10.4172/2090-0902.1000265.
- [13] S. P. Pathak and T. Singh, Optimal Homotopy Analysis Method for solving the linear and non-linear Fokker-Planck equations, British Journal of Mathematics and Computer Science, 7(3) (2015), 209–217, DOI: 10.9734/BJMCS/2015/15230.
- [14] M. S. Semary and H. N. Hassan, The Homotopy Analysis Method for Strongly Non-linear Initial/Boundary Value Problems, International Journal of Modern Mathematical Sciences, 9(3) (2014), 154–172.
- [15] L. Shijun, Advances In The Homotopy Analysis Method, World Scientific, 2014.
- [16] L. Shijun, Beyond Perturbation: Introduction To The Homotopy Analysis Method, Chapman and Hall/CRC, 2003.
- [17] L. Shijun, Homotopy Analysis Method in Nonlinear Differential Equations, Springer, 2012.
- [18] S. C. Shiralashetti and S. Kumbinarasaiah, Theoretical study on continuous polynomial wavelet bases through wavelet series collocation method for non-linear lane-Emden type equations, Applied Mathematics and Computa- tion, 315 (2017), 591–602, DOI: 10.1016/j.amc.2017.07.071.
- [19] S. C. Shiralashetti and S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of non-linear singular initial value problems, Alexandria Engineering Journal, 57(4) (2018), 2591–2600. DOI: 10.1016/j.aej.2017.07.014.
- [20] M. J. Siddiqui and A. Iqbal, Solution of Non-Linear Ito Systems of equations by Homotopy Analysis method, Eurasian Journal of Analytical Chemistry, 13(3) (2017), 293–302.
|