- [1] J. Chen, F. Liu, I. Turner, and V. Anh, The fundamental and numerical solutions of the Riesz space-fractional reaction dispersion equation, The ANZIAM Journal, 50(1) (2008), 45-57.
- [2] C. M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), 886-897.
- [3] M. Dehghan, M. Abbaszadeh, and A. Mohebbi, An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klien-Gordon equations, Engineering Analysis with Boundary Elements, 50, 2015, 412-434.
- [4] H. Ding, Ch. Li, and Y. Chen, High-Order Algorithms for Riesz Derivative and Their Applications (I), Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 653797, 17 pages http://dx.doi.org/10.1155/2014/653797
- [5] C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comput., 58(198) (1992), 603-630.
- [6] E. Hanert, On the numerical solution of space-time fractional diffusion models, Computers & Fluids, 46 (2011), 33-39.
- [7] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of NorthHolland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006.
- [8] C. Li, A. Chen, and J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, Journal of Computational Physics, 230(9) (2011), 3352-3368.
- [9] L. Qiu, C. Hu, and Q. Qin, A novel homogenization function method for inverse source problem of nonlinear time-fractional wave equation, Applied Mathematics Letters, 109, 2020, 106554.
- [10] J. Lin, W. Feng, S. Reutskiy, H. Xu, and Y. He, A new semi-analytical method for solving a class of time fractional partial differential equations with variable coefficients, Applied Mathematics Letters, 112, 2021, 106712.
- [11] J. Lin, Y. Zhang, S. Reutskiy, and W. Feng, A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems, Applied Mathematics and Computation, 398, 2021, 125964.
- [12] Ch. Lubich, Discretized fractional calculus, SIAM Journal on Mathematical Analysis, 17(3) (1986), 704-719.
- [13] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons Inc. New York 1993.
- [14] K.B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, NY, USA, (1974).
- [15] C. Piret and E. Hanert, A radial basis functions method for fractional diffusion equations, Journal of Computa- tional Physics, 238 (2013), 71-81.
- [16] I. Podlubny, Fractional Differential Equations, Academic Press, SanDiego (1999).
- [17] S. Shen, F. Liu, and V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numerical Algorithms, 56(3) (2011), 383-403.
- [18] S. Shen, F. Liu, V. Anh, and I. Turner, A novel numerical approximation for the space fractional advection- dispersion equation, IMA Journal of Applied Mathematics, 79(3) (2014), 431444.
- [19] Q. Yang, F. Liu, and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling, 34(1) (2010), 200-218.
- [20] H. Zhang and F. Liu, The fundamental solutions of the space-time Riesz fractional partial differential equations with periodic conditions, Numerical Mathematics: A Journal of Chinese Universities, English Series, 16(2) (2007), 181-192.
|