تعداد نشریات | 44 |
تعداد شمارهها | 1,312 |
تعداد مقالات | 16,114 |
تعداد مشاهده مقاله | 52,720,047 |
تعداد دریافت فایل اصل مقاله | 15,387,472 |
کاربرد مدلهای درختی و مبتنی بر کرنل در تعیین تبخیرتعرق مرجع روزانه در دو منطقه مرطوب و خشک ایران | ||
دانش آب و خاک | ||
مقاله 3، دوره 33، شماره 2، تیر 1402، صفحه 35-51 اصل مقاله (1.09 M) | ||
شناسه دیجیتال (DOI): 10.22034/ws.2021.45876.2415 | ||
نویسندگان | ||
فاطمه میکائیلی1؛ سعید صمدیان فرد* 2 | ||
1دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز | ||
2دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز | ||
چکیده | ||
با توجه به واقع شدن ایران در اقلیم خشک و نیمهخشک، تبخیر تعرق یکی از موثرترین مولفهها در بررسی وضعیت بیلان آبی است. برآورد دقیق این پارامتر در محاسبه دقیق نیاز آبی گیاهان و به تبع آن در طراحی و مدیریت سیتمهای آبیاری و منابع آب از اهمیت ویژهای برخوردار است. هدف از پژوهش حاضر، بررسی توانایی مدل رگرسیون بردار پشتیبان (SVR)، مدل جنگل تصادفی (RF) و مدل درختی M5P در پیشبینی روزانه مقادیر روزانه تبخیر تعرق گیاه مرجع در دو ایستگاه آستارا و سیرجان به ترتیب واقع در مناطق مرطوب و خشک ایران با استفاده از دادههای هواشناسی حداقل، متوسط و حداکثر دما، رطوبت نسبی، تابش خورشیدی و سرعت باد در بازه زمانی سالهای 2020-2000 است. درنهایت، دقت روشهای مذکور و روشهای تجربی در برآورد تبخیر تعرق روزانه گیاه مرجع با استفاده از معیارهای آماری جذر میانگین مربعات خطا، ضریب همبستگی، شاخص پراکندگی، ضریب نش- ساتکلیف و ضریب ویلموت مورد مقایسه قرار گرفت. نتایج حاصل از دادههای صحتسنجی نشان داد که مدلهای SVR3 (سناریو سه با روش رگرسیون بردار پشتیبان) و M5P3 ( سناریو سه با روش مدل درختی M5P) در ایستگاه آستارا با در نظر گرفتن تمامی پارامترهای هواشناسی و با دارا بودن ضریب همبستگی 993/0، جذر میانگین مربعات خطای 201/0 و همچنین مدل SVR3 در ایستگاه سیرجان نیز با ضریب همبستگی 982/0، جذر میانگین مربعات خطای 410/0 در مقایسه با روشهای تجربی هارگریوز- سامانی، مک کینک، تورک و دالتون نتایج بهتری در تخمین مقادیر تبخیر تعرق روزانه گیاه داشتهاند. | ||
کلیدواژهها | ||
تبخیر تعرق مرجع؛ جنگل تصادفی؛ درخت M5P؛ رگرسیون بردار پشتیبان؛ روشهای تجربی | ||
مراجع | ||
Alizade A, Mirshahi B, Hashemi Niya SM and Sanayi Nezhad H, 2001. Evaluation of accuracy and performance of potential evapotranspiration calculated by Hargreaves-Samani and evapotranspiration pan methods in synoptic stations of Khorasan province. Newar Scientific and Technical Journal 42: 51-70. (In Persian with English abstract).
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop evapotranspiration- guidelines for computing crop water requirements. Irrigation and Drainage Paper no. 56, FAO, Rome, Italy.
Anonymous, 1997. World Atlas of Desertification. United Nations Environmental Program (UNEP). Editorial commentary by N. Middleton and D.S.G. Edward Arnold, London.
Ayodele T, Ogunjuyigbe A, Amedu A and Munda J, 2019. Prediction of global solar irradi-ation using hybridized k-means and support vector regression algorithms. Renewable Energy Focus 29: 78–93.
Breiman L, 2001. Random forests. Machine Learning 45 (1): 5–32.
Chen D, Gong L, Xu CY and Halldin S, 2007. A high-resolution, gridded data set for monthly temperature normals (1971–2000) in Sweden. Geografiska Annaler: Series A, Physical Geography 89 (4): 249–261.
Chena H, Huanga JJ and McBeana E, 2020. Partitioning of daily evapotranspiration using a modified shuttle worth wallace model, random forest and support vector regression, for a cabbage farmland. Agricultural Water Management 228: 105923.
Dalton J, 1802. Experimental essays on the constitution of mixed gases; on the force of steam of vapour from waters and other liquids in different temperatures, both in a torricellian vacuum and in air on evaporation and on the expansion of gases by heat. Memoirs and Proceedings of the Manchester Literary & Philosophical Society 5: 535-602.
Fallahi MR, Varvani H and Goliyan S, 2012. Precipitation forecasting using regression tree model to flood control. 5th International Watershed and Water and Soil Resources Management. 29 February & 1 March, Kerman, Iran.
Feng K and Tian J, 2021. Forecasting reference evapotranspiration using data mining and limited climatic data. European Journal of Remote Sensing 54(S2): 363–371.
Feng Y, Cui N, Gong D, Zhang Q and Zhao L, 2017. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration. Agricultural Water Management 193: 163–173.
Gharahdaghi MH, Homaee M, Mirlatifi SM and Noroozi AA, 2019. Using forecasts of WRF regional model to improve the accuracy of reference evapotranspiration estimation. Iranian Soil and Water Research 51(1): 165-177. (In Persian with English abstract).
Gonzalez del Cerro RT, Subathra MSP, Manoj Kumarc N, Verrastro S and George ST, 2021. Modelling the daily reference evapotranspiration in semi-arid region of south India: A case study comparing ANFIS and empirical models. Information Processing in Agriculture 8:173– 184.
Granata F, 2019. Evapotranspiration evaluation models based on machine learning algorithms- A comparative study. Agricultural Water Management 217: 303-315.
Guitjens JC, 1982. Models of alfalfa yield and evapotranspiration. Journal of the Irrigation and Drainage Division 108 (IR3): 212–222.
Harbeck GE, 1962. A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory. U.S. Geological Survey, 272-E:101–105.
Hastie T, Tibshirani R and Friedman J, 2009. The Elements of Statistical Learning. Springer, New York.
Judi A and Sattari MT, 2015. Estimation of bridge base scour depth in a aqueous structures by gaussian process regression method. Journal of Applied Research in Irrigation and Drainage Structures Engineering. 16(65):19-36. (In Persian with English abstract).
Karimi S, Shiri J and Martic P, 2020. Supplanting missing climatic inputs in classical and random forest models for estimating reference evapotranspiration in humid coastal areas of Iran. Computers and Electronics in Agriculture 176:1-13.
Leib B, Sassenrath G and Schmidt AM, 2012. Irrigation scheduling tools. Pp.32-37 In: Perry C and Barnes E, (eds.). Cotton Irrigation Management for Humid Regions. Cotton, Incorporated, Cary, NC.
Makkink GF, 1957. Testing the penman formula by means of lysimeters. Journal Institute of Water Engineering 11: 277-288.
Noruzi H, Asghari Moghaddam A and Nadiri AA, 2015. Determination of vulnerable areas of Malekan plain aquifer to nitrate using random forest method. Journal of Environmental Science 41(4): 923-942.
Samadianfard S and Panahi S, 2018. Estimating daily reference evapotranspiration using data mining methods of support vector regression and M5 model tree. Journal of Watershed Management Research 10(18):157-167. (In Persian with English abstract).
Sattari MT, Nahrein F and Azimi V, 2013. M5 model trees and neural networks based prediction of daily ET0 (case study: Bonab Station). Iranian Journal of lrrigation and Drainage 1(7):104-113. (In Persian with English abstract).
Shiri J, 2018. Improving the performance of the mass transfer- based reference evapotranspiration estimation approaches through a coupled wavelet random forest methodology. Journal of Hydrology 561:737-750.
Siasar H and Honar T, 2019. Application of support vector machine, CHAID and random forest models, in estimated daily reference evapotranspiration in northern Sistan and Baluchestan province. Iranian Journal of Irrigation and Drainage 2: 378-388. (In Persian with English abstract).
Tao H, Diop L, Bodian A, Djaman K, Ndiaye PM and Mundher Yaseen Z, 2018. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: regional case study in Burkina Faso. Agricultural Water Management 208: 140–151.
Turc L, 1961. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy 12: 13-49.
Vapnik VN, 1995. The Nature of Statistical Learning Theory. Springer, New York. 314P.
Wang YM, Traore S and Kerh T, 2008. Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso. WSEAS Transactions on Computers 7: 704-713.
Yao W, Zhang C, Hao H, Wang X and Li X, 2018. A support vector machine approach to estimate global solar radiation with the influence of fog and haze. Renewable Energy128:155–162.
Zeiynal Zade K and Khan Mohammadi N, 2018. Comparison of the efficiency of linear and nonlinear time series models in simulating and predicting reference evapotranspiration. Journal of Geography and Planning 63: 139-160. | ||
آمار تعداد مشاهده مقاله: 447 تعداد دریافت فایل اصل مقاله: 281 |