تعداد نشریات | 44 |
تعداد شمارهها | 1,312 |
تعداد مقالات | 16,122 |
تعداد مشاهده مقاله | 52,720,853 |
تعداد دریافت فایل اصل مقاله | 15,388,328 |
تحلیل ترمودینامیکی سیستم ترکیبی پیل سوختی اکسید جامد-توربین گاز تغذیه شده با متانول و با بهرهگیری از سیستم خورشیدی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 8، دوره 52، شماره 2 - شماره پیاپی 99، مرداد 1401، صفحه 69-78 اصل مقاله (569.93 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.45900.2895 | ||
نویسندگان | ||
علی صابری مهر* ؛ وحید فرهنگ مهر | ||
استادیار، گروه مهندسی مکانیک، دانشگاه بناب، بناب، ایران | ||
چکیده | ||
متانول به عنوان یک سوخت جایگزین، به دلیل آلودگی کم و هزینة حمل و نقل پایین بینظیر است که میتواند با عملکرد کاتالیزورها در دمای °C300-250 به گاز سنتزی تجزیه شود. استفاده از این سوخت پس از سنتز در پیل سوختی اکسید جامد که در سالهای اخیر مورد توجه محققین قرار گرفته است، میتواند ویژگیهای منحصر به فردی داشته باشد. در کار حاضر، در قالب یک سیستم تولید سهگانة برق، سرمایش و گرمایش با بهرهگیری از انرژی خورشیدی، متانول ابتدا سنتز شده و به گازهای مورد استفاده در پیل سوختی اکسید جامد تبدیل میشود. سیستم پیل سوختی که در واقع برای افزایش تولید توان آن با یک سیستم توربین گازی ترکیب شده است، علاوه بر تولید برق، گرمای لازم برای تولید سرمایش در یک چیلر جذبی را فراهم میکند. نتایج تحلیل انرژی و اگزرژی سیستم پیشنهادی نشان داد که با کنترل دبیجریان متانول و دما، راندمان تبدیل به بالای60% میرسد. طبق نتایج تحلیل اگزرژی، تلفات برگشتناپذیر نور به گرما و تلفات گرما در واکنش تجزیة خورشیدی متانول در حدود 13% از کل اگزرژی ورودی را تشکیل میدهد. | ||
کلیدواژهها | ||
پیل سوختی اکسید جامد؛ متانول؛ اگزرژی؛ سیستم خورشیدی؛ انرژی تجدیدپذیر؛ تحلیل ترمودینامیکی | ||
مراجع | ||
[1] Saidur R., Abdelaziz E. A., Demirbas A., Hossain M. S. and Mekhilef S., A Review on Biomass as a Fuel for Boilers. Renewable Sustainable Energy Review, Vol. 15, pp. 2262–2289, 2011.
[2] Said S. A. M., Waseeuddin M. and Simakov D. S. A., A Review on Solar Reforming Systems. Renewable Sustainable Energy Review, Vol. 59, pp. 149–159, 2016.
[3] Sajgure M., Kachare B., Gawhale P., Waghmare S. and Jagadale G., Direct Methanol Fuel Cell : A Review, Vol. 6, pp. 8–11, 2016.
[4] Zhu T., Li Q., Xuan Y., Liu D. and Hong H., Performance Investigation of a Hybrid Photovoltaics and Mid-Temperature Methanol Thermochemistry System. Applied Energy, Vol. 256, pp. 113908, 2019.
[5] Bai Z., Liu Q., Gong L. and Lei J., Application of a Mid-/Low-Temperature Solar Thermochemical Technology in the Distributed Energy System with Cooling, Heating and Power Production. Applied Energy, Vol. 253, pp. 113491, 2019.
[6] Liu T., Liu Q., Lei J. and Sui J., A New Solar Hybrid Clean Fuel-Fired Distributed Energy System with Solar Thermochemical Conversion. Journal of Clean Production, Vol. 213, pp. 1011–1023, 2019.
[7] Colella W. G., FuelCell2010- 2016.
[8] Stambouli A. B. and Traversa E., Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy. Renewable Sustainable Energy Review, Vol. 6, pp. 433–455, 2002.
[9] Saberi-Mehr A., Gandiglio M., MosayebNezhad M., Lanzini A., Seyed Mahmoudi S. M., Yari M. and et al., Solar-Assisted Integrated Biogas Solid Oxide Fuel Cell (SOFC) Installation in Wastewater Treatment Plant: Energy and Economic Analysis. Applied Energy, Vol. 191, pp. 620-638, 2017.
[10] MosayebNezhad M., Saberi-Mehr A., Gandiglio M., Lanzini A. and Santarelli M., Techno-Economic Assessment of Biogas-Fed CHP Hybrid Systems in a Real Wastewater Treatment Plant. Applied Thermal Engineering, Vol. 129, pp. 1263–1280, 2017.
[11] Chitsaz A., Saberi-Mehr A. and Seyed Mahmoudi S. M., Exergoeconomic Analysis of a Trigeneration System Driven by a Solid Oxide Fuel Cell. Energy Conversion Management, Vol. 106, pp. 921-931, 2015.
[12] Gandiglio M., Saberi-Mehr A., MosayebNezhad M., Lanzini A. and Santarelli M., Solutions for Improving the Energy Efficiency in Wastewater Treatment Plants Based on Solid Oxide Fuel Cell Technology. Journal of Clean Production, Vol. 247, pp. 119080, 2020.
[13] Gadsbøll R. Ø., Thomsen J., Bang-Møller C., Ahrenfeldt J. and Henriksen U. B., Solid Oxide Fuel Cells Powered by Biomass Gasification for High Efficiency Power Generation. Energy, Vol. 131, pp. 198-206, 2017.
[14] Al Moussawi H., Fardoun F. and Louahlia-Gualous H., Review of Tri-Generation Technologies: Design Evaluation, Optimization, Decision-Making, and Selection Approach. Energy Conversion Management, Vol. 120, pp. 157–196, 2016.
[15] Zhou W., Yang H., Rissanen M., Nygren B. and Yan J., Decrease of Energy Demand for Bioethanol-Based Polygeneration System through Case Study. Applied Energy, Vol. 95, pp. 305–311, 2012.
[16] Shcheklein S. and Dubinin A., Hydrogen-Methanol SOFCs for Transport. International Journal of Hydrogen Energy, 2021.
[17] Xu Q., Xia L., He Q., Guo Z. and Ni M., Thermo-Electrochemical Modelling of High Temperature Methanol-Fuelled Solid Oxide Fuel Cells. Applied Energy, Vol. 291, pp. 116832, 2021.
[18] Tukenmez N., Yilmaz F. and Ozturk M., Parametric Analysis of a Solar Energy Based Multigeneration Plant with SOFC for Hydrogen Generation. International Journal of Hydrogen Energy, Vol. 47, No. 5, pp. 3266-3283, 2021.
[19] Yuan X., Liu Y. and Bucknall R., Optimised MOPSO with the Grey Relationship Analysis for the Multi-Criteria Objective Energy Dispatch of a Novel SOFC-Solar Hybrid CCHP Residential System in the UK. Energy Conversion Management, Vol. 243, pp. 114406, 2021.
[20] Montes M. J., Abánades A., Martínez-Val J. M. and Valdés M., Solar Multiple Optimization for a Solar-Only Thermal Power Plant, Using Oil as Heat Transfer Fluid in the Parabolic through Collectors. Solar Energy, Vol. 83, pp. 2165–2176, 2009.
[21] Liu T., Liu Q., Xu D. and Sui J., Performance Investigation of a New Distributed Energy System Integrated a Solar Thermochemical Process with Chemical Recuperation. Applied Thermal Engineering, Vol. 119, pp. 387–395, 2017.
[22] Saberi-Mehr A., Moharramian A., Hossainpour S. and Pavlov D. A., Effect of Blending Hydrogen to Biogas Fuel Driven from Anaerobic Digestion of Wastewater on the Performance of a Solid Oxide Fuel Cell System. Energy, Vol. 202, pp. 117668, 2020.
[23] Calise F., Palombo A. and Vanoli L., Design and Partial Load Exergy Analysis of Hybrid SOFC-GT Power Plant. Journal of Power Sources, Vol. 158, pp. 225–244, 2006.
[24] Systems O. EES: Engineering Equation Solver - Manual. F-Chart Software, Box 2003.
[25] Yari M., Saberi-Mehr A., Seyd Mahmoudi S. M. and Santarelli M., A Comparative Study of Two SOFC Based Cogeneration Systems Fed by Municipal Solid Waste by Means of either the Gasifier or Digester. Energy, Vol. 114, pp. 586–602, 2016.
[26] Suwanwarangkul R., Croiset E., Pritzker M. D., Fowler M. W., Douglas P. L. and Entchev E., Modelling of a Cathode-Supported Tubular Solid Oxide Fuel Cell Operating with Biomass-Derived Synthesis Gas. Journal of Power Sources, Vol. 166, pp. 386–399, 2007.
[27] Bejan A. and Moran M. J., Thermal Design and Optimization. John Wiley & Sons; 1996. | ||
آمار تعداد مشاهده مقاله: 285 تعداد دریافت فایل اصل مقاله: 211 |